scholarly journals INVESTIGATION OF CUTTING FORCE AND TOOL WEAR BEHAVIOUR IN DRY TURNING OF INCONEL 625

2010 ◽  
Vol 102-104 ◽  
pp. 653-657 ◽  
Author(s):  
Xu Hong Guo ◽  
Li Jun Teng ◽  
Wei Wang ◽  
Ting Ting Chen

In recent years, the machinability of magnesium alloy is concerned more and more by the public. In this paper, a study on the cutting properties of magnesium alloy AZ91D when dry turning with kentanium cutting tools is presented. It shows the cutting force measured by a data acquisition system which is made up of Kistler9257B piezoelectric crystal sensor dynamometer, Kistler5070A10100 charge amplifier and computer. The effect of cutting parameters on cutting force was studied, and the experimental formula was built. The tool wear and chip characteristics were observed with KYKY-EM3200 electron scanning microscope and EDAX PV9900 alpha ray spectrometer, while the surface roughness of the workpiece was measured with 2205 profilometer. Results showed that the cutting depth was the main influence factor on cutting force, followed by feed rate and cutting speed . The main form of tool wear showed to be diffusive wear and adhesive wear. The feed rate had the main influence on chip form and the workpiece surface roughness, cutting speed was less effective, the cutting depth was the least.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tejanshu Sekhar Sahu ◽  
Allan George ◽  
Basil Kuriachen ◽  
Jose Mathew ◽  
P.B. Dhanish

Purpose This paper aims to focus on analysing the wear characteristics of tungsten carbide tools on which various micro patterns are fabricated to study its effect on the machinability of Ti-6Al-4V at dry turning conditions. Design/methodology/approach Micro-patterns such as dimples, linear grooves and a novel combination of dimples and linear grooves were fabricated on rake faces of uncoated tools by micro-EDM process. Impact of these patterns on tool wear and chip morphology characteristics under dry machining conditions were analysed, and their performances were compared with the non-textured tool (NTT). Findings Encouraging results in terms of minimal tool wear and favourable chip morphology characteristics were observed in case of all the textured tools, which demonstrated better tribological characteristics in contrast to NTT. The average flank wear was reduced by 43.5, 32 and 24.7% in dimple textured tool (DTT), linear textured tool (LTT) and hybrid textured tool (HTT), respectively, as compared to NTT. The average chip curl diameters measured for NTT, DTT, LTT, and HTT were observed to be 6.60, 3.51, 4.0 and 4.31 mm, respectively. Originality/value The contribution of this work lies in fabricating innovative patterns using cost-effective micro-EDM process and analysing how the patterns, depending upon their dimensional area and wear debris accumulation characteristics, influence the machinability of Ti-6Al-4V in the absence of any lubrication mediums.


2010 ◽  
Vol 154-155 ◽  
pp. 708-711 ◽  
Author(s):  
Yang Qiao ◽  
Xing Ai ◽  
Zhan Qiang Liu

Powder metallurgy (PM) nickel-based superalloy is regarded as one of the most important aerospace industry materials. A series of turning tests in a wide range of speeds with different inserts were carried out to select the proper tool material. Then, the effect of cutting parameters on the cutting force, cutting temperature and tool wear was investigated for the selected insert. The effect of cutting parameters on the tool wear was examined through SEM and TEM micrographs. The experiential functions of tool life, cutting force and cutting temperature were developed. Finally, the cutting parameters in PM nickel-based superalloy dry turning were optimized based on tool life-efficiency contour analysis. The present approach and results will be helpful for understanding the machinability of PM nickel-based superalloy during dry turning for the manufacturing engineers.


Author(s):  
Diego de Medeiros Barbosa ◽  
Leticia Helena Guimarães Alvarinho ◽  
Aristides Magri ◽  
Daniel Suyama

Procedia CIRP ◽  
2020 ◽  
Vol 95 ◽  
pp. 572-577
Author(s):  
Kai Jiang ◽  
Xiaoyu Wu ◽  
Jianguo Lei ◽  
Bin Xu ◽  
Likuan Zhu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 111 (11-12) ◽  
pp. 803-806
Author(s):  
Dominik Hasselder ◽  
Eckart Uhlmann

Bei Drehbearbeitung auftretender Verschleiß am Werkzeug ist seit Jahrzehnten Gegenstand der Forschung, denn er beeinflusst die Oberflächengüte und den resultierenden Durchmesser des Werkstücks. Durch die gezielte Platzierung eines Triangulationssensors lassen sich Einflüsse dieser Art detektieren. In Zerspanungsuntersuchungen bei der Bearbeitung des austenitischen Stahls 1.4301 ohne Kühlmedium konnte gezeigt werden, dass der verschleißbedingte Durchmesserfehler und die hergestellte Oberflächentopografie prozesssicher messbar sind.   Tool wear and its detection has been part of academic research for decades. It may result in varying surface quality and is a potential cause of insufficient nominal diameter in turning. Mounting a triangulation laser on a turning tool allows for detecting variations in geometrical parameters of the workpiece. Also, when dry turning the austenitic steel 1.4301 it is possible to continuously detect the resulting surface topography and the discrepancy in the manufactured diameter.


Sign in / Sign up

Export Citation Format

Share Document