Exceptionally well-preserved silicified hippuritid rudist bivalves from the lower Maastrichtian of Puerto Rico

2020 ◽  
Vol 20 (18) ◽  
pp. 333-366
Author(s):  
Simon F. Mitchell

Exceptionally well-preserved (silicified) hippuritid rudists occur in the El Rayo Formation (lower Maastrichtian) of south-western Puerto Rico. Three species belonging to three different genera are present: Caribbea muellerreidi (VERMUNT), Laluzia peruviana (GERTH) and Parastroma guitarti (PALMER). Acid digestion of the limestones has resulted in a collection with numerous three-dimensional left and right valves many with the preservation of the minute details of the pore system. The morphological features of each species are described, and many features are illustrated for the first time. The new material, coupled with descriptions from other studies, demonstrates that six genera of endemic hippuritids evolved in two separate radiations in the New World: an older radiation of forms that had pallial canals in their left valves (Barrettia, Whitfieldiella and Parastroma) and a younger radiation of forms lacking pallial canals in their left valves (Laluzia, Caribbea and Praebarrettia). The exquisite preservation also reveals that in these endemic New World hippuritids the sockets for the teeth consisted of slots into which ribs on the teeth fitted; this contrasts with Old World hippuritids that have true sockets formed from upfolds of the tabulae for the teeth. The distinctive morphology of the tooth sockets is here used to define a monophyletic subfamily for which the name Barrettiinae CHUBB is available.

1976 ◽  
Vol 26 ◽  
pp. 73-93 ◽  
Author(s):  
D.B. Quinn

THE New World of the sixteenth century grew directly out of the Old not merely in a physical but in an intellectual sense. The men of the late fifteenth and early sixteenth centuries, who found the new lands overseas, were educated in a humanistic tradition which made the classical past, especially the Roman past, alive and relevant to them. Consequently, there is an element of continuity in the thinking about the discoveries and the problems they presented on the basis of older intellectual concepts, which continues to influence much of the thought of the sixteenth century about cosmography, natural history and about the planting of colonies in lands unknown to the ancients. It is astonishing how Ptolemy remained the standard bearer of the new discoveries: maps of the New World and other novel areas, added to his Geography for the first time in 1513, continued to proliferate in edition after edition until by the later sixteenth century the original maps and text had been so overlaid with new matter that they bore even less relationship to the original than the first issue of Gray's Anatomy has to the current edition. It was much the same with Pliny: the Natural History remained the starting point for New World and Asiatic botany and zoology throughout the sixteenth century. Oviedo in 1526 paid his respects to the master before suggesting that genuine novelties could now be added to his text: well before the end of the century Pliny too had been swamped in new material, though his text was also retained intact.


2012 ◽  
Vol 25 (1) ◽  
pp. 71-82 ◽  
Author(s):  
José P. O'Gorman ◽  
Zulma Gasparini ◽  
Leonardo Salgado

AbstractA partial, postcranial skeleton of a juvenile individual referred to Aristonectes cf. parvidens from the upper Maastrichtian López de Bertodano Formation, Isla Marambio (Seymour Island), Antarctica, is described. Additionally, two juvenile specimens, also referred to A. cf. parvidens from the Allen Formation (upper Campanian–lower Maastrichtian) and Jagüel Formation (upper Maastrichtian) (Río Negro province, Argentina), are redescribed. The analysis of the systematic value of the cervical centrum proportions of juvenile specimens of Elasmosauridae suggests that these elements can be used to differentiate juvenile specimens of A. cf. parvidens from juveniles of other Elasmosauridae. On this basis, the specimens described are referred to A. cf. parvidens. Based on the proportion of the cervical centra, the first South American plesiosaur described by Gay in 1848 is here referred to A. cf. parvidens. The coracoid of Aristonectes is described for the first time showing a cordiform fenestra, a feature only recorded in the Elasmosauridae among the Plesiosauria, therefore, these new data support the inclusion of Aristonectes within the Elasmosauridae. With the new material described in this paper, Aristonectes is one of the most frecuently recorded genera of Late Cretaceous plesiosaurs in the Southern Hemisphere.


2021 ◽  
Author(s):  
Caixia Zhang ◽  
Yu Liu ◽  
Javier Ortega-Hernández ◽  
Joanna Wolfe ◽  
Changfei Jin ◽  
...  

Abstract The Cambrian fossil record has produced remarkable insights into the origin of euarthropods, particularly the evolution of their versatile body plan of segments bearing specialized, jointed appendages for different functions including feeding and locomotion [01, 02]. Early euarthropod evolution involved a major transition from lobopodian-like taxa [03, 04, 05] to organisms featuring a fully sclerotized trunk (arthrodization) and limbs (arthropodization) [02, 06, 07, 08]. However, the precise origin of arthropodization remains controversial because some of the earliest branching euarthropods possess a broad dorsal carapace that obscures critical details of the trunk and appendage organization [09, 10, 11, 12, 13, 14, 15]. Here, we demonstrate the presence of fully arthropodized ventral appendages in the upper stem-group euarthropod Isoxys curvirostratus from the early Cambrian Chengjiang biota in South China. Micro-computed tomography reveals the detailed three-dimensional structure of the biramous appendages in I. curvirostratus for the first time. In addition to the raptorial frontal appendages I. curvirostratus also possesses two batches of morphologically distinct biramous limbs, with the first batch consisting of four pairs of short cephalic appendages bearing prominent endites with a feeding function, followed by a second batch of elongate trunk appendages for locomotion. Each biramous limb bears an endopod with more than 12 well-defined podomeres, and an exopod consisting of a slender shaft carrying approximately a dozen paddle-shaped lamellae. Our findings clarify the enigmatic appendicular organization of Isoxys, one of the most ubiquitous euarthropods in Cambrian Burgess Shale-type deposits worldwide [01, 10, 11, 12, 14, 15, 16, 17, 18]. Critically, our new material shows that the trunk of I. curvirostratus was not arthrodized. The phylogenetic position of isoxyiids as possibly the earliest branching members of Deuteropoda [01, 02, 07, 15, 19], suggests that arthropodized biramous appendages evolved before the pattern of full trunk arthrodization that characterizes most extant and extinct members of this successful animal phylum.


Author(s):  
S. Trachtenberg ◽  
D. J. DeRosier

The bacterial cell is propelled through the liquid environment by means of one or more rotating flagella. The bacterial flagellum is composed of a basal body (rotary motor), hook (universal coupler), and filament (propellor). The filament is a rigid helical assembly of only one protein species — flagellin. The filament can adopt different morphologies and change, reversibly, its helical parameters (pitch and hand) as a function of mechanical stress and chemical changes (pH, ionic strength) in the environment.


Author(s):  
X. Lin ◽  
X. K. Wang ◽  
V. P. Dravid ◽  
J. B. Ketterson ◽  
R. P. H. Chang

For small curvatures of a graphitic sheet, carbon atoms can maintain their preferred sp2 bonding while allowing the sheet to have various three-dimensional geometries, which may have exotic structural and electronic properties. In addition the fivefold rings will lead to a positive Gaussian curvature in the hexagonal network, and the sevenfold rings cause a negative one. By combining these sevenfold and fivefold rings with sixfold rings, it is possible to construct complicated carbon sp2 networks. Because it is much easier to introduce pentagons and heptagons into the single-layer hexagonal network than into the multilayer network, the complicated morphologies would be more common in the single-layer graphite structures. In this contribution, we report the observation and characterization of a new material of monolayer graphitic structure by electron diffraction, HREM, EELS.The synthesis process used in this study is reported early. We utilized a composite anode of graphite and copper for arc evaporation in helium.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Luo ◽  
Yuma Nakamura ◽  
Jinseon Park ◽  
Mina Yoon

AbstractRecent experiments identified Co3Sn2S2 as the first magnetic Weyl semimetal (MWSM). Using first-principles calculation with a global optimization approach, we explore the structural stabilities and topological electronic properties of cobalt (Co)-based shandite and alloys, Co3MM’X2 (M/M’ = Ge, Sn, Pb, X = S, Se, Te), and identify stable structures with different Weyl phases. Using a tight-binding model, for the first time, we reveal that the physical origin of the nodal lines of a Co-based shandite structure is the interlayer coupling between Co atoms in different Kagome layers, while the number of Weyl points and their types are mainly governed by the interaction between Co and the metal atoms, Sn, Ge, and Pb. The Co3SnPbS2 alloy exhibits two distinguished topological phases, depending on the relative positions of the Sn and Pb atoms: a three-dimensional quantum anomalous Hall metal, and a MWSM phase with anomalous Hall conductivity (~1290 Ω−1 cm−1) that is larger than that of Co2Sn2S2. Our work reveals the physical mechanism of the origination of Weyl fermions in Co-based shandite structures and proposes topological quantum states with high thermal stability.


2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


2004 ◽  
Vol 136 (6) ◽  
pp. 781-791 ◽  
Author(s):  
Stéphanie Boucher

AbstractThe New World species of Pseudonapomyza Hendel are reviewed. Only two species of the genus were previously known to occur in the Nearctic region: P. atra (Meigen) and P. lacteipennis (Malloch). Pseudonapomyza europaea Spencer and P. asiatica Spencer are here recorded for the first time in the Nearctic region and P. asiatica is recorded for the first time in Costa Rica and Venezuela. A key is provided to identify the four known New World species of Pseudonapomyza.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rui Zhai ◽  
Hui Chen ◽  
Zhihua Shan

AbstractElectrochemical modification of animal skin is a new material preparation method and new direction of research exploration. In this study, under the action of the electric field using NaCl as the supporting electrolyte, the effect of electrolysis on Glycyl-glycine(GlyGl), gelatin(Gel) and Three-dimensional rawhide collagen(3DC) were determined. The amino group of GlyGl is quickly eliminated within the anode region by electrolysis isolated by an anion exchange membrane. Using the same method, it was found that the molecular weight of Gel and the isoelectric point of the Gel decreased, and the viscosity and transparency of the Gel solution obviously changed. The electrolytic dissolution and structural changes of 3DC were further investigated. The results of TOC and TN showed that the organic matter in 3DC was dissolved by electrolysis, and the tissue cavitation was obvious. A new approach for the preparation of collagen-based multi-pore biomaterials by electrochemical method was explored.


2021 ◽  
Vol 11 (4) ◽  
pp. 1670
Author(s):  
Tetsuya Mimura ◽  
Shinpei Okawa ◽  
Hiroshi Kawaguchi ◽  
Yukari Tanikawa ◽  
Yoko Hoshi

Thyroid cancer is usually diagnosed by ultrasound imaging and fine-needle aspiration biopsy. However, diagnosis of follicular thyroid carcinomas (FTC) is difficult because FTC lacks nuclear atypia and a consensus on histological interpretation. Diffuse optical tomography (DOT) offers the potential to diagnose FTC because it can measure tumor hypoxia, while image reconstruction of the thyroid is still challenging mainly due to the complex anatomical features of the neck. In this study, we attempted to solve this issue by creating a finite element model of the human neck excluding the trachea (a void region). By reconstruction of the absorption coefficients at three wavelengths, 3D tissue oxygen saturation maps of the human thyroid are obtained for the first time by DOT.


Sign in / Sign up

Export Citation Format

Share Document