scholarly journals Structural and tectonic evolution of the Jabal Sumeini – Al Ain – Buraimi region, northern Oman and eastern United Arab Emirates

GeoArabia ◽  
2009 ◽  
Vol 14 (1) ◽  
pp. 115-142 ◽  
Author(s):  
Michael P. Searle ◽  
Mohammed Y. Ali

ABSTRACT Four main Late Cretaceous and Tertiary phases of crustal shortening and thrust-related deformation are recognised in the northern Oman Mountains, each phase ending with a regional unconformity throughout the Oman Mountains and the UAE foreland. The earliest is the major thrust emplacement of the Semail Ophiolite, and underlying Haybi, Hawasina and Sumeini duplexes from NE to SW onto the depressed northeastern continental margin of the Arabian Plate during the Cenomanian to Campanian-early Maastrichtian (D1). A prominent widespread unconformity that places Maastrichtian Qahlah Formation laterite, sandstones and conglomerates and Simsima Formation rudist - Acteonellid gastropod limestones over all underlying allochthonous units is recognised throughout the Oman Mountains. SW-verging folds and thrusts in Triassic to Cretaceous carbonate slope facies rocks exposed in Jabal Sumeini (Sumeini Group and Hamrat Duru Group) have been emplaced over uppermost Cretaceous Juweiza Formation conglomerates at the highest level of the Aruma foreland basin. These Sumeini D1 structures are abruptly truncated by an unconformity, above which are Middle Maastrichtian beds showing up to 95% ‘death assemblage’ rudists and gastropods just below the Cretaceous – Tertiary boundary (top of Simsima Formation). A second deformation event (D2) affected the Simsima Formation and underlying Sumeini Group, Hamrat Duru complex and Semail Ophiolite rocks. This phase shows gentle folding about NW-SE fold axes (e.g. Jabal Rawdah), along a similar trend to the Late Cretaceous D1 event. This trend is also parallel to a regional set of NW-SE aligned fractures in the UAE foreland. A major angular unconformity occurs beneath the Upper Palaeocene – Eocene shallow-marine limestones (Umm Er Radhuma, Rus and Dammam formations). Many foreland jabals in eastern Abu Dhabi (Jabals Qatar, Malaqet, Mundasa) show gentle post-Eocene folding formed during the third stage of crustal shortening (D3). The large pericline of Jabal Hafit is a double-plunging, east-verging box fold that formed after deposition of the Oligocene Asmari Formation limestones and Miocene Fars Formation gypsum and clays, the youngest beds affected by the fold. This Late Miocene – Pliocene phase of crustal shortening (D4) is the youngest phase of deformation in the eastern Al Ain-Buraimi region.

10.1144/m54.5 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 67-103
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThe tectonic evolution of the Oman Mountains as of the Neoproterozoic begins with a major extensional event, the Neoproterozoic Abu Mahara rifting. It was followed by the compressional Nabitah event, still during the Neoproterozoic, in Oman but possibly not in the study area. During the earliest Cambrian, the Jabal Akhdar area was affected by the Cadomian Orogeny, marked by NE--SW shortening. It is unclear, whether the Saih Hatat area was exposed to the Cadomian deformation, too. Still during the lower Cambrian, the Angudan Orogeny followed, characterized by NW--SE shortening. An episode of rifting affected the Saih Hatat area during the mid-Ordovician. During the mid-Carboniferous, both dome areas were deformed by tilting and large-scale open folding in the course of the ‘Hercynian’ event. As a consequence, a major unconformity formed. As another Late Paleozoic event, the Permian break-up of Pangaea and subsequent formation of the Hawasina ocean basin, are recorded in the Southeastern Oman Mountains. As a result, a passive margin formed which existed until the mid-Cretaceous, characterized by deposition of mostly shelfal carbonates. This interval of general tectonic quiescence was interrupted during the early Jurassic by uplift and tilting of the Arabian Platform. The platform collapsed during the late Cretaceous, related to the arrival of the obducted allochthonous nappes including the Semail Ophiolite, transforming the passive margin to an active margin.The Semail Ophiolite formed most likely above a subduction zone within the Neo-Tethys Ocean during the Cenomanian while parts of the Arabian Plate were subducted to the NE. Formation of oceanic lithosphere and SW-thrusting was broadly coeval, resulting in ophiolite obduction onto the Hawasina Basin. The Semail Ophiolite and the Hawasina rocks combined were thrust further onto the Arabian Plate. Their load created a foreland basin and forebulge within the Arabian Platform. Once the continental lithosphere of the Arabian Platform was forced into the subduction zone, a tear between the dense oceanic lithosphere and the buoyant continental lithosphere developed. This led to rapid uplift and exhumation of subducted continental lithosphere of the Saih Hatat area, while obduction was still going on, causing in multiple and intense folding/thrusting within the eastern Saih Hatat Dome. Exhumation of the Saih Hatat Dome was massive. The emplacement of the ophiolite was completed during the Campanian/Maastrichtian. For completeness, we also present alternative models for the developmental history of the Semail Ophiolite.Immediately after emplacement, the Arabian lithosphere underwent intense top-to-the-NE extensional shearing. Most of the Saih Hatat Dome was exhumed during the latest Cretaceous to Early Eocene, associated with major extensional shearing at its flanks. Further convergence during the late Eocene to Miocene resulted in exhumation of the Jabal Akhdar Dome and some gentle exhumation of the Saih Hatat Dome, shaping the present-day Southeastern Oman Mountains. In the coastal area, east and SE of the Saih Hatat Dome, some late Cretaceous to present-day uplift is evident by, e.g., uplifted marine terraces. The entire Oman Mountains are uplifting today, which is evident by the massive wadi incision into various rock units, including wadi deposits which may form overhangs.


GeoArabia ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. 387-402 ◽  
Author(s):  
M. Atef Noweir ◽  
Abdulrahman S. Alsharhan

ABSTRACT Detailed field mapping and structural studies in the Jebel Auha-Jebel Huwayyah area northeast of Al-Ain indicate that folding of neoautochthonous sedimentary rocks produced the north-northwest-trending Huwayyah Anticline. The anticline at the surface is composed of the Maastrichtian Qahlah and Simsima formations unconformably overlain by shallow-marine carbonate rocks that are correlated on faunal grounds with the Middle Eocene Dammam Formation. The investigation of the Huwayyah Anticline has identified three microfacies of bioclastic packstone, nummulitic packstone, and nummulitic packstone-grainstone in the local Dammam Formation. Diagenesis in the form of silicification, cementation, recrystallization, dissolution, compaction and neomorphism is widespread. The Huwayyah Anticline is a fault-propagation fold above a thrust ramp. The ramp developed from a pre-existing Late Cretaceous basal thrust within the Semail Ophiolite on the Oman Mountain Front. The anticline was formed as a result of regional compressive deformation due to rejuvenation of the Late Cretaceous thrust in post-Middle Eocene times. Westward-directed high-angle reverse faults of Jebel Auha trend parallel to the fold axis of the anticline. The Auha faults probably originated as west-dipping thrusts on the western flank of the anticline and were subsequently rotated to their present attitude as the flank of the anticline became steeper due to compression from the east.


GeoArabia ◽  
2008 ◽  
Vol 13 (2) ◽  
pp. 91-118 ◽  
Author(s):  
Mohammed Y. Ali ◽  
Manhal Sirat ◽  
James Small

ABSTRACT The area to the southeast of the city of Al Ain, Abu Dhabi, United Arab Emirates, is part of an arcuate sedimentary basin whose trend gradually changes from NNW near Al Ain to NNE at Ras Al Khaimah. The basin is bounded to the east by the generally N-trending Oman Mountains and on the west by an arcuate, overall west-verging fold-thrust front that involves Mesozoic carbonates. The fold-thrust front is part of the overall compressional system of Late Cretaceous age (with Late Tertiary reactivation) associated with obduction and emplacement of the Semail Ophiolite, Haybi, Hawasina and Sumeini sheets onto the continental margin of the Arabian Plate. Near Al Ain, the fold-thrust front is expressed as the remarkable, NNW-trending Jabal Hafit that rises one kilometer above the gravel-filled Al Jaww Plain. Gravity and magnetic investigations were carried-out in the Al Jaww Plain, an area of approximately 550 square km. The interpretation of these new data, including measurements of physical properties of rock samples from the area, were integrated with a new interpretation of an industry seismic reflection profile to provide constraints on the modelling of the subsurface structure and evolution of the sedimentary basin beneath Al Jaww Plain. We recognised four major tectono-stratigraphic units in the seismic profiles: autochthonous shelf carbonates, the Hawasina allochthon, Upper Cretaceous foreland basin sediments (primarily Fiqa Formation), and Tertiary neo-authochthonous units. Along-strike variations in the residual Bouguer gravity field were interpreted as being due to either variations in the thickness, or even total absence, of the Hawasina sheet. Comparison of two E-W gravity profiles, one in the southern part of our study area and the other to the north, suggest that the Hawasina sheet underlies little of the southern area but almost all of the northern area. Magnetic anomalies are weak (< 50 nT) over most of the area but peak (> 300 nT) in the easternmost part of the southern profile, where the high-susceptibility rocks of the Semail Ophiolite are exposed. Thus, we interpret that no continuation of the ophiolite extends westward from this outcrop into the subsurface of the study area. The structural geometries described here have resulted from two major tectonic events. The first, a Late Cretaceous phase, emplaced the obduction-related allochthonous thrust sheets of the Oman Mountains westward onto the Mesozoic carbonate platform. This phase primarily affected the eastern part of the study area and contributed to both the high magnetic (> 300 nT) and residual Bouguer gravity (> 14.0 mGal) anomalies. The second event, a Tertiary deformation phase, affected most parts of the area and produced a series of asymmetrical anticlines and synclines trending in a NNW-SSE direction. This phase contributed to the low residual gravity anomaly (< -9.0 mGal) in the center of the study area. We modelled that area as containing a sequence of post-Eocene carbonate sediments with a minimum thickness of 2.0 km. The Tertiary folding and thrusting formed as a result of a regional compressive deformation, whose principal compressive stress axes were sub-parallel to those of the Late Cretaceous compressional stress regime. The younger event reactivated high-angle reverse faults within the Mesozoic platform succession. Precise timing of the Tertiary deformation is debatable; it is most likely that the rejuvenation of the E-W to ENE-WSW Cretaceous stress regime took place in the Late Eocene-Miocene but gradually shifted to become N-S to NE-SW. This shift could be due to the collision of the Arabian and Eurasian plates and the opening of the Red Sea which started during Late Eocene and continues until the present-day.


GeoArabia ◽  
2007 ◽  
Vol 12 (2) ◽  
pp. 99-130 ◽  
Author(s):  
Michael P. Searle

ABSTRACT The Al Jabal al Akhdar and Saih Hatat culminations in the central Oman Mountains expose the complete mid-Permian to Late Cretaceous (Cenomanian) passive shelf and margin carbonate sequence beneath the allochtonous slope (Sumeini Group), basin (Hawasina complex), distal ocean-trench (Haybi complex) facies rocks, and the Semail ophiolite thrust sheets that were emplaced from NE to SW during the Late Cretaceous. Reconstruction of the pre-thrust sequences shows that time-equivalent rocks occur in successively stacked thrust sheets from shelf to slope to basin. The Al Jabal al Akhdar structure is a 60 km wavelength anticline plunging to the northwest beneath the Hawasina Window and with a fold axis that curves from WNW-ESE (Jabal Shams) to NNE-SSW (Jabal Nakhl). The structure shows little internal deformation except for minor intra-formational thrust duplexing within the Cretaceous shelf stratigraphy along the northern margin. The upper structural boundaries around the flanks of the shelf carbonate culminations have been re-activated as late stage normal faults. The Semail thrust formed a passive roof fault during late-stage culmination of al Al Jabal al Akhdar such that the ophiolite rests directly on Wasia Formation top-shelf with the entire Sumeini, Hawasina and Haybi thrust sheets displaced around the margins. NE-directed backthrusting and intense folding in the northern part of the Hawasina Window affects all allochtonous units and is related to a steep ramp in the Late Cretaceous shelf margin at depth. The Saih Hatat culmination is another 40 km half-wavelength anticline in the central Oman Mountains, but shows extreme deformation in the form of recumbent folds, sheath folds with NNE-trending axes and thrusting along the northern margin. High-pressure carpholite, blueschist and eclogite facies rocks are exposed at successively deeper structural levels, separated by high-strain normal sense shear zones. There is no evidence for a separate ‘North Muscat microplate’ or an intra-continental subduction zone, as previously proposed; all high-pressure units can be restored to show their pre-deformation palaeographic positions along the northern margin of the Arabian Plate. Both Al Jabal al Akhdar and Saih Hatat are Late Cretaceous culminations, folded after obduction of the Hawasina, Haybi and Semail ophiolite thrust sheets from northeast to southwest during the period Turonian to Campanian-Lower Maastrichtian. Maximum compressive stress along the central Oman Mountains was oriented NE-SW, parallel to the ophiolite emplacement direction, but a second compressive stress axis was oriented WNW-ESE, either concurrently or slightly later in time, resulting in a dome and basin structural geometry. The biaxial fracture pattern in the foreland, southwest of the Oman Mountains could be explained as a result of the WNW-directed emplacement of the Masirah ophiolite belt and Batain mélange during the Campanian-early Palaeocene. Both Al Jabal al Akhdar and Saih Hatat were positive topographic features at the end of the Cretaceous with Upper Maastrichtian and Palaeogene sediments onlapping both flanks. In Jabal Abiad, these Palaeogene sediments have been uplifted by at least 2 km since the Late Miocene-Early Oligocene associated with minor NNE-SSW compression. Tertiary shortening, folding and thrusting increases to the north in the Musandam peninsula where the first effects of the Arabian Plate-Eurasian Plate (Zagros belt) continent-continent collision are seen.


2020 ◽  
Vol 4 (1) ◽  
pp. 10-20
Author(s):  
Haidar Salim Anan

The taxonomical consideration, probable phylogeny and stratigraphic significance of twenty-eight middle Eocene (Bartonian) planktic foraminiferal species from the eastern limb of Jabal Hafit, Al Ain area, United Arab Emirates (UAE), Northern Oman Mountains (NOM) are presented, and twenty one of them are illustrated. Identification of these twenty-eight species belonging to ten genera Globoturborotalia, Subbotina, Globigerinatheka, Inordinatosphaera, Orbulinoides, Hantkenina, Acarinina, Morozovelloides, Pseudohastigerina and Turborotalia has led to the recognition of three biostratigraphic zones, in ascending order: Morozovelloides lehneri PRZ (E11), Orbulinoides beckmanni TRZ (E12) and Morozovelloides crassata HOZ (E13). Eight out of the identified species are recorded, in this study, for the first time from Jabal Hafit: Globoturborotalia martini, Subbotina gortanii, S. jacksonensis, S. senni, Globigerinatheca barri, Acarinina praetopilensis, A. punctocarinata and Morozovelloides bandyi. The second or third record of three species from J. Hafit outside its original records are recently documented by the present author: Inordinatosphaera indica, Hantkenina australis and H. compressa. The paleontology, paleoclimatology and paleogeographic distribution of the identified taxa at Jabal Hafit and other Paleogene outcrops in the UAE and Tethys are presented and discussed. The identified fauna emphasis the wide geographic areas in the Tethys, from Atlantic to Indian-Pacific Oceans via Mediterranean.


GeoArabia ◽  
2006 ◽  
Vol 11 (1) ◽  
pp. 97-140 ◽  
Author(s):  
Jacek B. Filbrandt ◽  
Salah Al-Dhahab ◽  
Abdullah Al-Habsy ◽  
Kester Harris ◽  
John Keating ◽  
...  

ABSTRACT On the basis of structural style and differences in Late Cretaceous evolution, the carbonate platform in northern Oman and the allochthonous wedge comprising deepwater sediments and oceanic crust in the Oman Mountains form distinct structural domains. Imbrication associated with the emplacement of the Semail Ophiolite and predominantly SW-verging thrusting of the Arabian Platform margin culminated in the late early Campanian. The structural grain of NW-trending thrust faults and contractional folds contrasts markedly with the style and grain of the region immediately south of the Oman Mountains (our study area) and implies strong strain partitioning. Kinematic indicators from subsurface data, combined with the age of growth faulting, provide the basis for the interpretation that maximum horizontal stress was oriented NW-SE in this foreland region rather than NE-SW during the Campanian. The dominant tectonic control on the formation of faults is believed to have been an oblique “collision” of the Indian Continent with the Arabian Plate during the Santonian-Campanian. Deformation in this domain was dominated by distributed strike-slip and normal faulting. This period of faulting was significant for two reasons: (1) The faults both enhanced existing structures and formed new traps. They also allowed vertical migration of hydrocarbons from Palaeozoic reservoirs (e.g. Haushi clastic accumulations) into Shu’aiba and Natih carbonates above. Until that time, some 75 Ma ago, oil was retained in Late Palaeozoic and older traps. This period of deformation is a “Critical Event” within the context of Oman’s hydrocarbon distribution.(2) Faults with NNW and WNW orientations that developed at that time appear to be directly associated with important fracture systems that affect the productivity of several giant fields comprising Natih and Shu’aiba carbonate reservoirs (e.g. Lekhwair, Saih Rawl). Following this tectonic event, late Maastrichtian to Palaeocene uplift and erosion in excess of 1,000 m, is recorded by truncation of the Aruma Group and Natih Formation, as well as part of the Shu’aiba Formation below the base Cenozoic unconformity. Seismic velocity and porosity anomalies from Lekhwair field in the northwest to the Huqf-Haushi High in the southeast, provide additional support for the areal distribution of this event. Around the Lekhwair and Dhulaima fields, the circular to elliptical subcrop pattern below this unconformity does not support the notion of a peripheral bulge related to the emplacement of the allochthon. The stress field changed during the late Cenozoic with the opening of the Red Sea and Gulf of Aden, and the collision of the Arabian Plate with the Iranian Plate. NE-SW-oriented maximum horizontal stress during the late Cenozoic led to the formation of major folds resulting in, for example, the surface anticlines over the Natih and Fahud fields as well as causing inversion along the Maradi Fault Zone. This may also have led to the uplift of the Oman Mountains. The regional northerly subsidence caused by crustal loading of the Arabian Plate gently tilted traps during the Pliocene-Pleistocene from Lekhwair to Fahud.


2021 ◽  
Author(s):  
Bernardo Jose Franco ◽  
Maria Agustina Celentano ◽  
Desdemona Magdalena Popa

Abstract Objectives/Scope Aptian (Shuaiba-Bab) and Cenomanian (Mishrif-Shilaif) intra-shelf basins were extensively studied with their genesis focused on environmental/climatic disturbances (Vahrenkamp et al., 2015a). Additionally, local tectonic events can also affect the physiography of these basins, especially the Cenomanian intra-shelf basin subjected to NE compressional regime. As this ongoing regime increased at Late-Cretaceous and Miocene, it led to more tectonic-driven basin physiography. This paper investigates the areal extent, interaction, and commonalities between the extensional Aptian intra-shelf basin, compressional Late-Cretaceous intra-shelf basin, Late-Cretaceous-Paleogene foreland basin, and Late Oligocene-Miocene salt basin. Methods, Procedures, Process To understand the genesis, driving forces, and distribution of these basins, we used a combination of several large-scale stratigraphic well correlations and seismic, together with age dating, cores, and extensive well information (ADNOC proprietary internal reports). The methodology used this data for detailed mapping of 11 relevant time stratigraphic intervals, placing the mapped architecture in the context of the global eustatic sea level and major geodynamic events of the Arabian Plate. Results, Observations, Conclusions Aptian basin took place as a consequence of environmental/climatic disturbances (Vahrenkamp et al., 2015a). However, environmental factors alone cannot explain isolated carbonate build-ups on salt-related structures at the intra-shelf basin, offshore Abu Dhabi. Subsequently, the emplacement of thrust sheets of Tethyan rocks from NE, and following ophiolite obduction (Searle et al., 1990; Searle, 2007; Searle and Ali, 2009; Searle et al., 2014), established a compressional regime in the Albian?-Cenomanian. This induced tectonic features such as: loading-erosion on eastern Abu Dhabi, isolated carbonate build-ups, and reactivation of a N-S deep-rooted fault (possibly a continuation of Precambrian Amad basement ridge from KSA). This N-S feature was probably the main factor contributing the basin axis change from E-W Aptian trend to N-S position at Cenomanian. Further compression continued into the Coniacian-Santonian, leading to a nascent foreland basin. This compression established a foredeep in eastern Abu Dhabi, separated by a bulge from the northern extension of the eastern Rub’ Al-Khali basin (Ghurab syncline) (Patton and O'Connor, 1988). Numerous paleostructures were developed onshore Abu Dhabi, together with several small patch-reefs on offshore salt growing structures. Campanian exhibits maximum structuration associated to eastern transpression related to Masirah ophiolite obduction during India drift (Johnson et al., 2005, Filbrandt et al., 2006; Gaina et al., 2015). This caused more differentiation of the foredeep, onshore synclines, and northern paleostructures, which continued to cease through Maastrichtian. From Paleocene to Late-Eocene, paleostructure growth intensity continued decreasing and foreland basin hydrological restriction began with the Neotethys closure. Through Oligocene until Burdigalian this situation continued, where the Neotethys closed with the Zagros Orogeny (Sharland et al., 2001), causing a new environmental/climatic disturbances period. These disturbances prevented the continued progradation of the carbonate factory into the foredeep, leading to conspicuous platform-basin differentiation. Additionally, the Zagros orogeny tilted the plate northeastward, dismantling the paleostructures generated at Late-Cenomanian. Finally, during an arid climate in the Burdigalian to Middle-Miocene, the confined Neogene sea filled the foredeep accommodation space with massive evaporites. Novel/Additive Information Little has been published about the outline and architecture of these basins in Abu Dhabi and the detailed circumstances that led to their genesis using subsurface information.


2002 ◽  
Vol 139 (3) ◽  
pp. 241-255 ◽  
Author(s):  
MICHAEL P. SEARLE ◽  
JON COX

The metamorphic sole along the base of the Semail ophiolite in Oman records the earliest thrust slice subducted and accreted to the base of the ophiolite mantle sequence. In the Bani Hamid area (United Arab Emirates) a c. 870 m thick thrust slice of granulite facies rocks includes garnet+ diopside amphibolites, enstatite+cordierite+sillimanite+spinel±sapphirine quartzites, alkaline mafic granulites (meta-jacupirangites) quartzo-feldspathic gneisses and calc-silicates. The latter contain garnet+diopside+scapolite+plagioclase±wollastonite. P–T conditions of granulite facies metamorphism are in the range 800–860°C and 10.5±1.1 kbar to 14.7±2.8 kbar. Garnet+clinopyroxene+hornblende+plagioclase amphibolites from the metamorphic sole record peak P–T conditions of 840±70°C and 11.6±1.6 kbar (THERMOCALC average P–T mode) and 840–870°C and 13.9–11.8 kbar (conventional thermobarometry) with low degrees of partial melting producing very small melt segregations of tonalitic material. Pressure estimates are equivalent to depths of 57–46 km beneath oceanic crust, much deeper than can be accounted for by the thickness of the ophiolite. 40Ar39Ar hornblende ages from the amphibolites range from 95–93 Ma, synchronous with formation of the plagiogranites in the ophiolite crustal sequence (95 Ma), eruption of the Lasail (V2) volcanic sequence and deposition of Cenomanian–Turonian radiolaria in metalliferous sediments between the Geotimes (V1) and Lasail (V2) lavas. Protoliths of the metamorphic sole were Triassic–Jurassic and early Cretaceous Haybi volcanic rocks, Exotic limestones and quartzites and were clearly not equivalent to the Semail ophiolite rocks, showing that initiation of subduction could not have occurred at the ridge axis. Heat for metamorphism was derived from the mantle sequence harzburgites and dunites which were at or around 1100–1500°C. All data from the sub-ophiolite metamorphic sole in Oman and the United Arab Emirates indicate that the ophiolite was formed in a Supra-Subduction zone setting and that obduction occurred along a NE-dipping high-temperature subduction zone during Late Cretaceous times.


1984 ◽  
Vol 21 (4) ◽  
pp. 396-406 ◽  
Author(s):  
Michael P. Searle

High-level intrusions of highly undersaturated alkalic ultrabasic and gabbroic rocks occur in four areas of the Oman Mountains. They all intrude either the Haybi volcanic – Oman Exotic limestone (Permo-Triassic) thrust slice immediately beneath the Semail Ophiolite (Cenomanian) or the uppermost thrust slice of the underlying Hawasina (Permian to Cenomanian) Tethyan sediments. Detailed structural mapping indicates that the sills were all emplaced prior to the Late Cretaceous thrusting of the Oman allochthon onto the Mesozoic continental margin of Arabia, and therefore in an oceanic setting. These differentiated sills consist of biotite wehrlites at the base and kaersutite-bearing jacupirangites above, with kaersutite gabbros at the top. Olivine occurs only at the base. Titanaugite, kaersutite, titanium phlogopite, apatite, and opaque iron–titanium oxides are common mineral phases.Fractional crystallization and gravity differentiation processes and a rapid increase in volatile components at decreasing pressures all played a part in the petrogenesis of these uncommon intrusive rocks. K–Ar ages on biotites span the mid-Jurassic to Cenomanian, and in the northern Oman Mountains kaersutite jacupirangites are incorporated into the Cenomanian–Turonian amphibolite facies metamorphic sheet beneath the Semail Ophiolite. Alkaline magmas were present at depth along the passive continental margin, right up until Cenomanian times when northeast subduction was initiated and compressional tectonics began. Alkaline volcanism of Cenomanian age in the Dibba Zone indicates that tensional rifting processes were operative along the continental margin at the same time as compressional thrusting was occurring outboard. The alkaline rocks are unrelated to the ophiolite but are artifacts of Mesozoic rifting events in Tethys now preserved in footwall thrust slices beneath the ophiolite.


Sign in / Sign up

Export Citation Format

Share Document