Integrated Production Chemistry Management of The Schoonebeek Heavy Oil Re-Development in the Netherlands: From Project to Start-Up and Steady State Production

Author(s):  
Andrew G. Shepherd ◽  
Stuart Mcgregor ◽  
Ruud A. Trompert ◽  
Sen Ubbels ◽  
Bob Van De Gender ◽  
...  
2017 ◽  
Vol 10 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Wang Shou-long ◽  
Li Ai-fen ◽  
Peng Rui-gang ◽  
Yu Miao ◽  
Fu Shuai-shi

Objective:The rheological properties of oil severely affect the determination of percolation theory, development program, production technology and oil-gathering and transferring process, especially for super heavy oil reservoirs. This paper illustrated the basic seepage morphology of super heavy oil in micro pores based on its rheological characteristics.Methods:The non-linear flow law and start-up pressure gradient of super heavy oil under irreducible water saturation at different temperatures were performed with different permeable sand packs. Meanwhile, the empirical formulas between start-up pressure gradient, the parameters describing the velocity-pressure drop curve and the ratio of gas permeability of a core to fluid viscosity were established.Results:The results demonstrate that temperature and core permeability have significant effect on the non-linear flow characteristics of super heavy oil. The relationship between start-up pressure gradient of oil, the parameters representing the velocity-pressure drop curve and the ratio of core permeability to fluid viscosity could be described as a power function.Conclusion:Above all, the quantitative description of the seepage law of super heavy oil reservoir was proposed in this paper, and finally the empirical diagram for determining the minimum and maximum start-up pressure of heavy oil with different viscosity in different permeable formations was obtained.


2015 ◽  
Author(s):  
Terrence Dickerson ◽  
Andrew McDaniel ◽  
Sherry Williams ◽  
Dianne Luning-Prak ◽  
Len Hamilton ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2990
Author(s):  
Yang ◽  
Liao

Since the zero initial conditions of the boost converter are far from the target equilibrium point, the overshoot of the input current and the output voltage will cause energy loss during the start-up process when the converter adopts the commonly used small-signal model design control method. This paper presents a sliding mode control strategy that combines two switching surfaces. One switching surface based on the large-signal model is employed for the start-up to minimize inrush current and voltage overshoot. The stability of this strategy is verified by Lyapunov theory and simulation. Once the converter reaches the steady-state, the other switching surface with PI compensation of voltage error is employed to improve the robustness. The latter switching surface, which is adopted to regulate the voltage, can not only suppress the perturbation of input voltage and load, but also achieve a better dynamic process and a zero steady-state error. Furthermore, the discrete sliding mode controller is implemented by digital signal processor (DSP). Finally, the results of simulation, experiment and theoretical analysis are consistent.


1985 ◽  
Vol 54 (5) ◽  
pp. 1271-1281 ◽  
Author(s):  
J. L. Smith ◽  
M. G. Hoy ◽  
G. F. Koshland ◽  
D. M. Phillips ◽  
R. F. Zernicke

Intralimb coordination of the paw-shake response (PSR) was studied in five normal and eleven spinal adult cats. Representative extensor and flexor muscles that function at the hip, knee, and ankle joints were recorded, and in six spinal cats the kinematics of these joints were determined from high-speed cinefilm. The PSR was characterized uniquely by mixed (flexor-extensor) synergies. Knee extensor (VL) and ankle flexor (TA) coactivity constituted one synergy, while the second synergy included hip extensors (GM, BF), knee flexors (BF, LG), and ankle extensor (LG). Joint displacements reflected the mixed synergy. Motions at the knee and ankle were out of phase, while motions at the hip were in phase with movements of the knee. Electromyographic burst durations and onset latencies were similar for normal and spinal cats, and in all cycles of a given PSR, the recruitment pattern was consistent for all muscles, except VL. High variability and missing bursts marked the activity of VL in some spinal cats. In PSRs with missing VL bursts, oscillations at the knee joint were not coordinated with cyclic actions at the hip and ankle. From the kinematic records three distinct phases of the PSR were identified: start-up consisted of the initial four to six cycles during which hip, knee, and ankle actions progressively became organized; steady-state included the middle three to five cycles that were characterized by consistent displacement at all three joints; and slow-down comprised the last three to four cycles during which the rate of oscillations slowed, and joint excursions decreased. During steady-state cycles, muscle contractions acted to reverse joint motions at the knee and ankle joints. Thus, knee and ankle extensor recruitment coincided with joint flexion, while joint flexors were recruited during joint extension. Muscle activity at the hip, however, was in phase with displacement. While neural input to muscle is consistent throughout the three phases of the PSR, segment motions can become progressively organized during start-up to achieve stable oscillations. Whether the PSR attains steady-state or not may hinge on the sensitive interplay that occurs between muscle activities and intersegmental mechanical interactions. That kinetic interplay is detailed in the following paper.


Author(s):  
Igor Putchkov ◽  
Alexander Arkhipov ◽  
Valery Moskovskikh ◽  
Harald Kissel ◽  
Alexander Laqua

Blades for heavy duty engines with circumferential rotor grooves are designed such that radial contact is made between the blade teeth and rotor groove at steady state operation conditions. However, sometimes circumferential contact arises between neighboring blade shanks, which is often caused by blade root /rotor thermal expansion. In this case, the radial fixation will give the lower limit of blade frequency band, and the circumferential will give the upper one. The Blade frequency difference between these two fixations might reach about 200–500 Hz depending on blade airfoil and root sizes. When some excitation source (e.g., vane passing frequencies caused by up-stream and down-stream vane counts) has a frequency level situated between blade frequencies caused by radial and circumferential contact, such a case is the subject of the proposed approach. In order to assess how strongly the blade might be fixed under different conditions and how long it might be in resonance during engine start-up and subsequent loading, a 3D elastic-plastic transient analysis and corresponding frequency calculation of blade/rotor assembly is used. At engine start-up the circumferential (lateral) contact between neighboring blade roots is insignificant, and the radial contact between the rotor and the blade is dominant. The lateral contact spot between neighboring blade attachments during start-up appears due to different rates of blade/rotor heating. Further heating leads to an increase of the lateral contact spot areas. The closing of these contact surfaces starts from the outer root edge and spreads toward the inner one, leading to an increase of assembly natural frequencies. Engine loading and further heating lead to the appearance of a circumferential gap between the surfaces, causing the lateral contact to disappear during steady state. The blade root coupling switches again to the usual radial contact state, with the corresponding reduction of natural frequencies. Because the described phenomenon might occur for some time during every start-up and shut-down (from several minutes to couple of hours), it becomes even more severe from a dynamics standpoint if some natural frequency of coupled system crosses the exciting frequency. Examples of assembly frequency tuning are presented.


2015 ◽  
Author(s):  
Yongbin Wu ◽  
Xiuluan Li ◽  
Dehuang Shen ◽  
Wanjun He ◽  
Xueqi Liu

Sign in / Sign up

Export Citation Format

Share Document