Coupling-Strength Criteria for Sequential Implicit Formulations

2021 ◽  
Author(s):  
Jacques Franc ◽  
Olav Møyner ◽  
Hamdi A. Tchelepi

Abstract Sequential Fully Implicit (SFI) schemes have been proposed as an alternative to the Fully Implicit Method (FIM). A significant advantage of SFI is that one can employ scalable strategies to the flow and transport problems. However, the primary disadvantage of using SFI compared with FIM is the fact that the splitting errors induced by the decoupling operator, which separates the pressure from the saturation(s), can lead to serious convergence difficulties of the overall nonlinear problem. Thus, it is important to quantify the coupling strength in an adaptive manner in both space and time. We present criteria that localize the computational cells where the pressure and saturation solutions are tightly coupled. The approach is using terms in the FIM Jacobian matrix, we quantify the sensitivity of the mass and volume-balance equations to changes in the pressure and the saturations. We identify three criteria that provide a measure of the coupling strength across the equations and variables. The standard CFL stability criteria, which are based entirely on the saturation equations, are a subset of the new criteria. Here, the pressure equation is solved using Algebraic MultiGrid (AMG), or a multiscale solver, such as the Multiscale Restricted-Smooth Basis (MsRSB) approach. The transport equations are then solved using a fixed total-velocity. These ‘coupling strength’ criteria are used to identify the cells where the pressure-saturation coupling is strong. The applicability of the derived coupling-strength criteria is tested using several test cases. The first test is using a gravitational immiscible dead-oil lock-exchange under a unit mobility ratio and large differences in density. For this case, the SFI algorithm fails to converge to the fully coupled solution due to the large splitting errors. Introducing a fully coupled solution stage on the local subdomains as an additional correction step restores nonlinear convergence. Detailed analysis of the ‘coupling strength’ criteria indicates that the criteria related to the sensitivity of the mass balance to changes in the pressure and the sensitivity of the volume balance to changes in the saturations are the most important ones to satisfy. Other test cases include an alternate gas-water-gas injection in a top layer of the SPE 10 test case and an injection-production scenario in a three-dimensional reservoir with layered lognormally distributed permeability. We propose novel criteria to estimate the strength of coupling between pressure and saturation. These CFL-like numbers are used to identify the cells that require fully implicit treatment in the nonlinear solution strategy. These criteria can also be used to improve the nonlinear convergence rates of Adaptive Implicit Methods (AIM).

2010 ◽  
Vol 138 (8) ◽  
pp. 3333-3341 ◽  
Author(s):  
Katherine J. Evans ◽  
Mark A. Taylor ◽  
John B. Drake

Abstract A fully implicit (FI) time integration method has been implemented into a spectral finite-element shallow-water equation model on a sphere, and it is compared to existing fully explicit leapfrog and semi-implicit methods for a suite of test cases. This experiment is designed to determine the time step sizes that minimize simulation time while maintaining sufficient accuracy for these problems. For test cases without an analytical solution from which to compare, it is demonstrated that time step sizes 30–60 times larger than the gravity wave stability limits and 6–20 times larger than the advective-scale stability limits are possible using the FI method without a loss in accuracy, depending on the problem being solved. For a steady-state test case, the FI method produces error within machine accuracy limits as with existing methods, but using an arbitrarily large time step size.


2021 ◽  
Author(s):  
Yifan Zhou ◽  
Jiamin Jiang ◽  
Pavel Tomin

Abstract The sequential fully implicit (SFI) scheme was introduced (Jenny et al. 2006) for solving coupled flow and transport problems. Each time step for SFI consists of an outer loop, in which there are inner Newton loops to implicitly and sequentially solve the pressure and transport sub-problems. In standard SFI, the sub-problems are usually fully solved at each outer iteration. This can result in wasted computations that contribute little towards the coupled solution. The issue is known as ‘over-solving’. Our objective is to minimize the cost while maintain or improve the convergence of SFI by preventing ‘over-solving’. We first developed a framework based on the nonlinear acceleration techniques (Jiang and Tchelepi 2019) to ensure robust outer-loop convergence. We then developed inexact-type methods that prevent ‘over-solving’ and minimize the cost of inner solvers for SFI. The motivation is similar to the inexact Newton method, where the inner (linear) iterations are controlled in a way that the outer (Newton) convergence is not degraded, but the overall computational effort is greatly reduced. We proposed an adaptive strategy that provides relative tolerances based on the convergence rates of the coupled problem. The developed inexact SFI method was tested using numerous simulation studies. We compared different strategies such as fixed relaxations on absolute and relative tolerances for the inner solvers. The test cases included synthetic as well as real-field models with complex flow physics and high heterogeneity. The results show that the basic SFI method is quite inefficient. When the coupling is strong, we observed that the outer convergence is mainly restricted by the initial residuals of the sub-problems. It was observed that the feedback from one inner solver can cause the residual of the other to rebound to a much higher level. Away from a coupled solution, additional accuracy achieved in inner solvers is wasted, contributing to little or no reduction of the overall residual. By comparison, the inexact SFI method adaptively provided the relative tolerances adequate for the sub-problems. We show across a wide range of flow conditions that the inexact SFI can effectively resolve the ‘over-solving’ issue, and thus greatly improve the overall performance. The novel information of this paper includes: 1) we found that for SFI, there is no need for one sub-problem to strive for perfection (‘over-solving’), while the coupled residual remains high because of the other sub-problem; 2) a novel inexact SFI method was developed to prevent ‘over-solving’ and minimize the cost of inner solvers; 3) an adaptive strategy was proposed for relative tolerances based on the convergence rates of the coupled problem; and 4) a novel SFI framework was developed based on the nonlinear acceleration techniques to ensure robust outer-loop convergence.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2001 ◽  
Author(s):  
Jinghong Fan

Abstract A three-dimensional, meso-electro-mechanical model has been formulated for description of PMN-PT-BT ceramics. Unlike the experimentally fit models and phenomenological models which are based on state variables and/or empirical relationships, this fully coupled, computational mesomechanics model for polycrystalline PMN-PT-BT ceramics is developed based on considerations of constitutive behavior of single crystals. Specifically, domain wall nucleation and evolution rate equations are proposed in this work to describe the nonlinear hysteresis behavior of these ceramics near the phase transition temperature with maximum permittivity.


1993 ◽  
Vol 115 (1) ◽  
pp. 121-127 ◽  
Author(s):  
E. Bonataki ◽  
P. Chaviaropoulos ◽  
K. D. Papailiou

The calculation of the blade shape, when the desired velocity distribution is imposed, has been the object of numerous investigations in the past. The object of this paper is to present a new method suitable for the design of turbomachinery stator and rotor blade sections, lying on an arbitrary axisymmetric stream-surface with varying streamtube width. The flow is considered irrotational in the absolute frame of reference and compressible. The given data are the streamtube geometry, the number of blades, the inlet flow conditions and the suction and pressure side velocity distributions as functions of the normalized arc-length. The output of the computation is the blade shape that satisfies the above data. The method solves an elliptic type partial differential equation for the velocity modulus with Dirichlet and periodic type boundary conditions on the (potential function, stream function)-plane (Φ, Ψ). The flow angle field is subsequently calculated solving an ordinary differential equation along the iso-Φ or iso-Ψ lines. The blade coordinates are, finally, computed by numerical integration. A set of closure conditions has been developed and discussed in the paper. The method is validated on several test cases and a discussion is held concerning its application and limitations.


Sign in / Sign up

Export Citation Format

Share Document