A Novel Well Test Data Analyzer and Process Optimizer Using Artificial Intelligence and Machine Learning Techniques

2021 ◽  
Author(s):  
Nagaraju Reddicharla ◽  
Subba Ramarao Rachapudi ◽  
Indra Utama ◽  
Furqan Ahmed Khan ◽  
Prabhker Reddy Vanam ◽  
...  

Abstract Well testing is one of the vital process as part of reservoir performance monitoring. As field matures with increase in number of well stock, testing becomes tedious job in terms of resources (MPFM and test separators) and this affect the production quota delivery. In addition, the test data validation and approval follow a business process that needs up to 10 days before to accept or reject the well tests. The volume of well tests conducted were almost 10,000 and out of them around 10 To 15 % of tests were rejected statistically per year. The objective of the paper is to develop a methodology to reduce well test rejections and timely raising the flag for operator intervention to recommence the well test. This case study was applied in a mature field, which is producing for 40 years that has good volume of historical well test data is available. This paper discusses the development of a data driven Well test data analyzer and Optimizer supported by artificial intelligence (AI) for wells being tested using MPFM in two staged approach. The motivating idea is to ingest historical, real-time data, well model performance curve and prescribe the quality of the well test data to provide flag to operator on real time. The ML prediction results helps testing operations and can reduce the test acceptance turnaround timing drastically from 10 days to hours. In Second layer, an unsupervised model with historical data is helping to identify the parameters that affecting for rejection of the well test example duration of testing, choke size, GOR etc. The outcome from the modeling will be incorporated in updating the well test procedure and testing Philosophy. This approach is being under evaluation stage in one of the asset in ADNOC Onshore. The results are expected to be reducing the well test rejection by at least 5 % that further optimize the resources required and improve the back allocation process. Furthermore, real time flagging of the test Quality will help in reduction of validation cycle from 10 days hours to improve the well testing cycle process. This methodology improves integrated reservoir management compliance of well testing requirements in asset where resources are limited. This methodology is envisioned to be integrated with full field digital oil field Implementation. This is a novel approach to apply machine learning and artificial intelligence application to well testing. It maximizes the utilization of real-time data for creating advisory system that improve test data quality monitoring and timely decision-making to reduce the well test rejection.

2021 ◽  
Author(s):  
Gabriela Chaves ◽  
Danielle Monteiro ◽  
Virgilio José Martins Ferreira

Abstract Commingle production nodes are standard practice in the industry to combine multiple segments into one. This practice is adopted at the subsurface or surface to reduce costs, elements (e.g. pipes), and space. However, it leads to one problem: determine the rates of the single elements. This problem is recurrently solved in the platform scenario using the back allocation approach, where the total platform flowrate is used to obtain the individual wells’ flowrates. The wells’ flowrates are crucial to monitor, manage and make operational decisions in order to optimize field production. This work combined outflow (well and flowline) simulation, reservoir inflow, algorithms, and an optimization problem to calculate the wells’ flowrates and give a status about the current well state. Wells stated as unsuited indicates either the input data, the well model, or the well is behaving not as expected. The well status is valuable operational information that can be interpreted, for instance, to indicate the need for a new well testing, or as reliability rate for simulations run. The well flowrates are calculated considering three scenarios the probable, minimum and maximum. Real-time data is used as input data and production well test is used to tune and update well model and parameters routinely. The methodology was applied using a representative offshore oil field with 14 producing wells for two-years production time. The back allocation methodology showed robustness in all cases, labeling the wells properly, calculating the flowrates, and honoring the platform flowrate.


Author(s):  
Atheer Alahmed ◽  
Amal Alrasheedi ◽  
Maha Alharbi ◽  
Norah Alrebdi ◽  
Marwan Aleasa ◽  
...  

Author(s):  
Sridharan Chandrasekaran ◽  
G. Suresh Kumar

Rate of Penetration (ROP) is one of the important factors influencing the drilling efficiency. Since cost recovery is an important bottom line in the drilling industry, optimizing ROP is essential to minimize the drilling operational cost and capital cost. Traditional the empirical models are not adaptive to new lithology changes and hence the predictive accuracy is low and subjective. With advancement in big data technologies, real- time data storage cost is lowered, and the availability of real-time data is enhanced. In this study, it is shown that optimization methods together with data models has immense potential in predicting ROP based on real time measurements on the rig. A machine learning based data model is developed by utilizing the offset vertical wells’ real time operational parameters while drilling. Data pre-processing methods and feature engineering methods modify the raw data into a processed data so that the model learns effectively from the inputs. A multi – layer back propagation neural network is developed, cross-validated and compared with field measurements and empirical models.


2021 ◽  
Author(s):  
Rodrigo Chamusca Machado ◽  
Fabbio Leite ◽  
Cristiano Xavier ◽  
Alberto Albuquerque ◽  
Samuel Lima ◽  
...  

Objectives/Scope This paper presents how a brazilian Drilling Contractor and a startup built a partnership to optimize the maintenance window of subsea blowout preventers (BOPs) using condition-based maintenance (CBM). It showcases examples of insights about the operational conditions of its components, which were obtained by applying machine learning techniques in real time and historic, structured or unstructured, data. Methods, Procedures, Process From unstructured and structured historical data, which are generated daily from BOP operations, a knowledge bank was built and used to develop normal functioning models. This has been possible even without real-time data, as it has been tested with large sets of operational data collected from event log text files. Software retrieves the data from Event Loggers and creates structured database, comprising analog variables, warnings, alarms and system information. Using machine learning algorithms, the historical data is then used to develop normal behavior modeling for the target components. Thereby, it is possible to use the event logger or real time data to identify abnormal operation moments and detect failure patterns. Critical situations are immediately transmitted to the RTOC (Real-time Operations Center) and management team, while less critical alerts are recorded in the system for further investigation. Results, Observations, Conclusions During the implementation period, Drilling Contractor was able to identify a BOP failure using the detection algorithms and used 100% of the information generated by the system and reports to efficiently plan for equipment maintenance. The system has also been intensively used for incident investigation, helping to identify root causes through data analytics and retro-feeding the machine learning algorithms for future automated failure predictions. This development is expected to significantly reduce the risk of BOP retrieval during the operation for corrective maintenance, increased staff efficiency in maintenance activities, reducing the risk of downtime and improving the scope of maintenance during operational windows, and finally reduction in the cost of spare parts replacementduring maintenance without impact on operational safety. Novel/Additive Information For the near future, the plan is to integrate the system with the Computerized Maintenance Management System (CMMS), checking for historical maintenance, overdue maintenance, certifications, at the same place and time that we are getting real-time operational data and insights. Using real-time data as input, we expect to expand the failure prediction application for other BOP parts (such as regulators, shuttle valves, SPMs (Submounted Plate valves), etc) and increase the applicability for other critical equipment on the rig.


2020 ◽  
Author(s):  
Abdelmadjid Aissani ◽  
Edwin Tan Jun Yi ◽  
Thivyashini Thamilyanan

2020 ◽  
Vol 223 (3) ◽  
pp. 437.e1-437.e15
Author(s):  
Joshua Guedalia ◽  
Michal Lipschuetz ◽  
Michal Novoselsky-Persky ◽  
Sarah M. Cohen ◽  
Amihai Rottenstreich ◽  
...  

2018 ◽  
Author(s):  
Xiaojia Guo ◽  
Yael Grushka-Cockayne ◽  
Bert De Reyck

Sign in / Sign up

Export Citation Format

Share Document