Continuous Improvement: Rotary Steerable System with Electromagnetic Telemetry as Approach to Reduce Well Time

2021 ◽  
Author(s):  
Farit Rakhmangulov ◽  
Pavel Dorokhin

Abstract One of the main challenges from operating companies is the continuous reduction of well construction time. During drilling, considerable time is spent on static measurements to determine the wellbore location and to verify that the actual well path matches the planned one. The electromagnetic telemetry system (EMT) allows the taking of static directional survey measurements during connections, when the drill string is in slips. Transmitting commands to the rotary steerable system (RSS) through the EMT does not cause the drilling process to stop, which also reduces well construction time. The work describes well drilling experience with the use of the electromagnetic channel for communication with the rotary steerable system and the positive displacement downhole motor not only in horizontal section but in all well sections, starting from the top hole. Combined use of the complete logging while drilling tools (LWD) with this type of the telemetry system is a valuable finding. The article describes BHA, operational principles of this type of the telemetry system, and problems which may arise during operation.

2013 ◽  
Vol 845 ◽  
pp. 81-85
Author(s):  
D. Sujan ◽  
C.W. Nguong ◽  
S.N.B. Lee ◽  
Mesfin G. Zewge

This paper attempts to explain the motion behaviour of the marine riser coupled to a drill string when the vortex induced vibration (VIV) is involved. Vibrations have been reported to have a major effect on the drilling performance, affecting the rate of penetration (ROP), causing severe damages to the drilling tools and also reduces the efficiency of the drilling process. There are two major components of drilling tools that are subjected to vibration, namely the marine riser and the drilling string. Analysis of vibration in the marine riser and drill string are two topical areas that have individually received considerable attention by researchers in the past. Though these two subjects are interrelated, borne by the fact that the marine riser encapsulates and protects the drill pipe, there have been few attempts to investigate them together as a unity. Due to the complexities of the models, simplified assumptions were made in order to undertake the investigation by using staggered approach. The results were compared with the experimental and simulation data from the open literature. It was found that the maximum displacement with negative damping occurs at low frequency and rotation speed.


2021 ◽  
Author(s):  
Raphael Chidiogo Ozioko ◽  
Humphrey Osita ◽  
Udochukwu Ohia

Abstract This paper describes the successful deployment of integrated underreamer technology with real-time communication through mud-pulse telemetry system, to drill and eliminate rathole in 17 1/2-in × 20-in successfully in one run and helped set casing as close as possible to the depth of suspected pressure ramp on an exploratory well offshore Nigeria. This technology uses the same communication system (actuator bypass) as Measurement While Drilling tools (MWD), Logging While Drilling tools (LWD) and Rotary Steerable System (RSS). Integrated underreamers broadly used in the drilling operations support optimized casing and completion programs and helps reduce operational risks such as wellbore instability. The ball drop and hydraulically activated reamer technologies available today comes with limitations and HSE risks. The distinctive functionalities of the integrated underreamer technology described here, such as unlimited and fast activation and deactivation via downlinking and real time downhole feedback, reduce uncertainties and operational costs in the complex and challenging deep offshore drilling operations. The real-time communication through mud-pulse telemetry system enabled the placement of integrated underreamer 6 meters from the bit thereby reducing rathole length to approximately 9 meters compared to 80 meters for conventional underreamer application. The integrated underreamer is compatible with existing RSS and provide unlimited activation cycles. The integrated underreamer offers flexibility in placement in the bottom hole assembly (BHA) and it can be used as a near bit reamer, or as main reamer or as both. In this case, the integrated near bit underreamer eliminated the need for a dedicated rathole removal run. It also offered a feedback confirmation of the cutter blades activation status and provided hole opening log thereby reducing the operational uncertainties for the under reaming, saving rig time up to 16 hours for shoulder test. The underreamer was successfully deployed to drill and ream the challenging 14 ¾" × 17 ½" and ream 17 ½" × 20" section offshore Nigeria. Both sections were drilled and reamed to section Total Depth (TD) in one run with all directional reuirements and Measuring While Drilling (MWD)/Logging While Drilling (LWD) met saving client approximately 4 days of rig spread cost. The reamer appeared to provide an in-gauge borehole allowing for successful running and cementing of liners without any issues, demonstrating superior borehole quality. The new Technology proved to be a reliable and flexible hole enlargement while drilling solution that help to improve drilling performance, reduce operational risks and save cost.


Author(s):  
MYA Alkaragoolee ◽  
KM Ebrahimi ◽  
R Whalley

In hydrocarbon well-drilling operations, self-excited, stick-slip vibration is considered as a source of drilling equipment failures, which also causes a reduction in the drilling penetration. This leads to delays and increase in the operational and equipment costs. A new approach using distributed-lumped (hybrid) modelling is considered as the first step in understanding the stick-slip phenomena in order to determine a solution to this problem. In this paper, a hybrid modelling scheme is the advocated modelling method proposed in contrast to the conventional lumped modelling. Three case studies are used to show that hybrid modelling is an accurate technique in the representation of stick-slip oscillations, particularly when the length of the drill string is high. The results show that the modelling technique adopted in this work can more accurately present the phenomena associated with stick-slip process.


2013 ◽  
Vol 845 ◽  
pp. 168-172
Author(s):  
Nabil Al Batati ◽  
Fakhruldin M. Hashim ◽  
William Pao

This paper attempts to explain the motion behaviour of the marine riser coupled to a drill string when the vortex induced vibration (VIV) is involved. Vibrations have been reported to have a major effect on the drilling performance, affecting the rate of penetration (ROP), causing severe damages to the drilling tools and also reduces the efficiency of the drilling process. There are two major components of drilling tools that are subjected to vibration, namely the marine riser and the drilling string. Analysis of vibration in the marine riser and drill string are two topical areas that have individually received considerable attention by researchers in the past. Though these two subjects are interrelated, borne by the fact that the marine riser encapsulates and protects the drill pipe, there have been few attempts to investigate them together as a unity. Due to the complexities of the models, simplified assumptions were made in order to undertake the investigation by using staggered approach. The results were compared with the experimental and simulation data from the open literature. It was found that the maximum displacement with negative damping occurs at low frequency and rotation speed.


2021 ◽  
pp. 37-51
Author(s):  
V. G. Griguletsky ◽  
A. B. Kuznetsov

The article raises the question that if you change the bit type, the "critical length" of the lower part of the drill string change too. For the first time, the issue of the stability of the lower part of the drill string when drilling a horizontal section of the wellbore was formulated and solved, taking into account the features of the bit designs (roller bit, wing bit, PDC bit) and the mechanism of rock destruction in well drilling. The research uses the generally accepted provisions of the linear theory of elasticity of materials, the theory of stability of rods and shells. It is assumed that the lower part of the drill string is a heavy elastic rod, experiencing the combined action of the forces of the pipe's own weight and the axial load on the bit, and the twisting moment from the rotor table acting on the pipe string is not taken into account. To find the "critical length" of the lower part of the drill string, simple approximate formulas are obtained that take into account the bit size, drill collar and axial load.


2019 ◽  
Vol 11 (7) ◽  
pp. 168781401986296 ◽  
Author(s):  
Yong Chen ◽  
Chuan He ◽  
Xu Zhou ◽  
Hao Yu

Based on field data and the related theories, the effects of drill string length, rotation speed, trajectory, and drilling fluid density on the friction during horizontal well drilling are analyzed in Sichuan. With increasing the length of drill string in the horizontal section, the friction grows. The drill pipe rotates faster and the torque decreases. Large undulation of borehole deviation and the “W” shape of the horizontal section lead to excessive friction. A higher fluid density causes higher torque and drag. Moreover, a friction reduction tool is designed to reduce friction, decrease the wear between the casing and the drill pipe joint, and prevent the differential pressure sticking, which improves the rate of penetration, and the specially designed spiral diversion channels improve the efficiency of borehole cleaning. The field experimental results have shown that the accumulated operational time of the friction reduction tool is more than 130 h and its fatigue life reaches up to 3 × 105 cycles. A plan of improving the tool structure is proposed to reduce the mud balling after the experiment. Finally, the mathematical model of calculating the spacing of the friction reduction tools is established, which provides technical support for investigating the friction in horizontal well drilling.


Author(s):  
Dundie Prasetyo ◽  
Ratnayu Sitaresmi ◽  
Suryo Prakoso

<p>Horizontal drilling technique is one of the methodologies that have been widely implemented recently to improve the production of oil and gas wells. Several directional drilling technologies can be utilized to drill the horizontal wells, vary from the simple mud motor technology to Bottom Hole Assembly (BHA) with the advanced motorized rotary steerable system. The most common challenges that are faced on horizontal drilling process are on the torque and the stick-slip throughout drilling process, which can be a technical limiter for the length of horizontal section that would be achieved. Stick-slip is the vibration <br />that occurs due to cyclical rotation acceleration and deceleration of the bit, BHA or drill string. This speed fluctuation can be zero to rate of penetration (ROP) or far in excess of twice the rotational speed measured at the surface. Stick-slip can significantly decrease the ROP, increases tool failures and damage, affects borehole quality, and impacts the data acquisition. Several studies had been done on the stick-slip prevention and mitigation throughout creation of new technology and drilling parameters envelope throughout drilling operation, however no study has ever been done on the modification of the design and <br />arrangement of the BHA itself to produce more stable BHA. Drill pipe is the longest component of the drill string and hence it has biggest contribution towards the drill string dynamic. This study will focus on the analysis of the combination of several designs of the drill-pipe and heavy weight drill-pipe (HWDP) that has different stiffness and characteristic to produce less <br />vibration, more efficient drilling operation and to create zero impact on the data acquisition measured while drilling. FEA drilling dynamic simulator was used to optimize the drill sting configuration. The calculation is made from the depth of 750 m to 2801 m. Based on the drilling simulation results of FEA modeling, it is concluded that the minimum stiffness ratio to give stability of the drill string of Well-Z7 BHA and Well-Z6 BHA is 0.012175272 and 0.07366999, respectively.</p>


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


2015 ◽  
Vol 733 ◽  
pp. 17-22
Author(s):  
Yang Liu ◽  
Zhuo Pu He ◽  
Qi Ma ◽  
Yu Hang Yu

In order to improve the drilling speed, lower the costs of development and solve the challenge of economies of scale development in sulige gas field, the key techniques research on long horizontal section of horizontal well drilling speed are carried out. Through analyzing the well drilling and geological data in study area, and supplemented by the feedback of measured bottom hole parameters provided by underground engineering parameters measuring instrument, the key factors restricting the drilling speed are found out and finally developed a series of optimum fast drilling technologies of horizontal wells, including exploitation geology engineering technique, strengthen the control of wellbore trajectory, optimize the design of the drill bit and BHA and intensify the drilling parameters. These technologies have a high reference value to improve the ROP of horizontal well in sulige gas field.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


Sign in / Sign up

Export Citation Format

Share Document