Autonomous Outflow Control Technology AOCD in New Water/Polymer Injectors in Heavy Oil Fields from South Sultanate of Oman

2021 ◽  
Author(s):  
Ameera Al Harrasi ◽  
Muna Maskari ◽  
Gerardo Urdaneta ◽  
Ali Al-Jumah ◽  
Salim Badi ◽  
...  

Abstract Several techniques have been applied to improve fluid conformance of injection wells to increase water flooding performance and eventually field oil recovery. Normal outflow control devices (OCDs) are effective solutions for this problem in reservoirs with static properties, however, they fail in reservoirs with complex/dynamic properties including fractures. There, the continuously increasing contrast in the injectivity of a section with the fractures compared to the rest of the well causes diverting a great portion of the injected fluid into the thief zone thus creating short-circuit to the nearby producer wells. This paper summarizes the integrated technical learnings from the successful application of the installation of the first Autonomous Outflow Control (AOCD) technology in a new long horizontal injector well. It shows the result of extending this technology to other injectors in both water and polymer phases in the field, it details the facts and observations and the insights the multidisciplinary authors have captured. This autonomously reactive control on the injection fluid conformance resulted in an increased sweep and ultimate oil recovery while reducing the total volume of injected fluid.

2021 ◽  
Author(s):  
Sultan Ibrahim Al Shemaili ◽  
Ahmed Mohamed Fawzy ◽  
Elamari Assreti ◽  
Mohamed El Maghraby ◽  
Mojtaba Moradi ◽  
...  

Abstract Several techniques have been applied to improve the water conformance of injection wells to eventually improve field oil recovery. Standalone Passive flow control devices or these devices combined with Sliding sleeves have been successful to improve the conformance in the wells, however, they may fail to provide the required performance in the reservoirs with complex/dynamic properties including propagating/dilating fractures or faults and may also require intervention. This is mainly because the continuously increasing contrast in the injectivity of a section with the feature compared to the rest of the well causes diverting a great portion of the injected fluid into the thief zone which ultimately creates short-circuit to the nearby producer wells. The new autonomous injection device overcomes this issue by selectively choking the injection of fluid into the growing fractures crossing the well. Once a predefined upper flowrate limit is reached at the zone, the valves autonomously close. Well A has been injecting water into reservoir B for several years. It has been recognised from the surveys that the well passes through two major faults and the other two features/fractures with huge uncertainty around their properties. The use of the autonomous valve was considered the best solution to control the water conformance in this well. The device initially operates as a normal passive outflow control valve, and if the injected flowrate flowing through the valve exceeds a designed limit, the device will automatically shut off. This provides the advantage of controlling the faults and fractures in case they were highly conductive as compared to other sections of the well and also once these zones are closed, the device enables the fluid to be distributed to other sections of the well, thereby improving the overall injection conformance. A comprehensive study was performed to change the existing dual completion to a single completion and determine the optimum completion design for delivering the targeted rate for the well while taking into account the huge uncertainty around the faults and features properties. The retrofitted completion including 9 joints with Autonomous valves and 5 joints with Bypass ICD valves were installed in the horizontal section of the well in six compartments separated with five swell packers. The completion was installed in mid-2020 and the well has been on the injection since September 2020. The well performance outcomes show that new completion has successfully delivered the target rate. Also, the data from a PLT survey performed in Feb 2021 shows that the valves have successfully minimised the outflow toward the faults and fractures. This allows achieving the optimised well performance autonomously as the impacts of thief zones on the injected fluid conformance is mitigated and a balanced-prescribed injection distribution is maintained. This paper presents the results from one of the early installations of the valves in a water injection well in the Middle East for ADNOC onshore. The paper discusses the applied completion design workflow as well as some field performance and PLT data.


2021 ◽  
Author(s):  
Yigang Liu ◽  
Zheng Chen ◽  
Xianghai Meng ◽  
Zhixiong Zhang ◽  
Jian Zou ◽  
...  

Abstract Nowadays intelligent injection is considered as a new frontier for offshore oilfield. In order to improve the water injection indicators such as allocation frequency and qualification rate, intelligent separate-layer injection technology (ISIT) was researched, deployed and optimized in B offshore oilfield from 2015. In the course of 5 years’ project operation, some experience of success or failure was achieved. B offshore oilfield is the largest offshore oilfield in China with 33 water flooding oilfields and more than 800 water injection wells. With the continuous development, the problem of injection management mainly reflected in the contradiction between increasing demand of allocation and limited operation time and space was exposed. Two kinds of ISIT, cable implanted intelligent separate-layer injection technology(CISIT) and wireless intelligent separate-layer injection technology(WISIT), were deployed to solve the above problem. CISIT controlled the distributor downhole by electricity while WISIT controlled the distributor downhole by pressure pulse. By the use of ISIT, downhole nozzle's action, packer testing and downhole data monitoring could be remotely controlled on the ground. During the 5 years’ test, ISIT was optimized from the field breakdown including large flow range flowing test, cable protection project, efficient coding mode, water seepage resistance and so on. With the continuous optimization and quality control improvement, ISIT has overcome many problems, such as downhole short circuit and communication loss, and is becoming more stable and reliable. At present, ISIT can meet the needs of large flow injection(max 800m3/d per layer) and can adapt to the high frequency of acidizing and fracturing in offshore oilfield. The failure rate of ISIT has dropped to nearly 20% in 2020. As of December 2020, ISIT has formed series products for different internal diameter wells and applied in 156 water injection wells in B offshore oilfield. The average allocation frequency has increased from less than one time to 2 times per year. Through the application of ISIT, B offshore oilfield has accumulatively saved more than 2100 days of platform occupation and more than 73 million RMB yuan of allocation cost. The use of ISIT makes B offshore oilfield's injection become more efficient and intelligent. The 5 years’ experience of ISIT applicationin B offshore oilfield has a fairly referential significance for other offshore oilfields.


2020 ◽  
Author(s):  
Sudad H Al-Obaidi ◽  
Khalaf FH

The dynamics and performance of major oil deposits in late (final) stage of development of large oil fields are given the current rates of oil recovery. The high oil recoveries are resulted as a consequence of the favorable geological and physical characteristics of the development objects, application of development systems and optimal density well spacing, adequate geological structure, maintain during the process of the development the optimal rates of technological development, the modes of operation of wells and a project of the fund of production wells, continuous improvement of the project systems taking into account the dynamics of the reserves development and the clarification of the geological structure.


2013 ◽  
Vol 53 (2) ◽  
pp. 489
Author(s):  
Reza Ardianto

Business management of oil and gas in Pertamina State Oil enterprises was handed to one of its subsidiaries: Pertamina EP (PEP). With a vast working area of 140,000 km2, it consists of 214 fields where 80% is an old field (mature field or brown field). Most of these oil fields were discovered during Dutch colonialism. One of these fields was Rantau oil field, discovered in 1928; it is considered one of potential structure at the time. Peak oil production was achieved at 31,711 barrels of oil per day (BOPD) (wc 17.2%) in 1969, and it is still producing 2,500 BOPD from primary stage.To get better recovery from the Rantau oil field, it is necessary to identify the potential of secondary recovery water-flooding. Some screening criteria had been completed to select an appropriate method that could be applied in the Rantau field. PEP is preparing an Enhanced Oil Recovery (EOR) program to be applied in some oil fields with subsurface and surface potential consideration. The implementation was initiated by the EOR Department at PEP. The issue of the national oil production increasing program from the government has to be realised by the EOR Department at Pertamina EP. Following the national oil increasing program, management of PEP urged to increase oil production in a rapid and realistic way. As a result, the program of secondary and tertiary recovery pilot project should be conducted simultaneously by the EOR Department on some of the fields that have passed their peak. On the other hand, PEP has only limited geology, geophysics, reservoir, and production (GGRP) data, and most of the oil fields have been producing since 1930s. The conditions that have to be dealt with are as follows: production from the existing field is declining, data is collected and interpreted during a long period, huge amounts of production data, and reservoir model and simulation do not exist and are not frequently updated. Based on this, the planning of EOR struggled due to length of time needed versus the need for quick development. It has become much more of a challenge for the team consisting of integrated geophysics, geology, reservoir, production, process facility, project management and economic evaluation. This extended abstract presents the term of managing limited GGRP data that contributes to the successful pilot waterflood project in the Rantau field. It also explains the uses of limited subsurface GGRP data to overcome the uncertainty for planning of the waterflood pilot project in the Rantau field, as a part of planning using limited data.


2021 ◽  
pp. 61-72
Author(s):  
I. G. Sabanina ◽  
T. V. Semenova ◽  
Yu. Ya. Bolshakov ◽  
S. V. Vorobjeva

Currently, most of the oil fields in the West Siberian oil and gas province are in the final stage of development. There is water-cut in production, a decrease in oil production, and the structure of residual reserves deteriorates. The search and application of the most successful scientific methods and technologies for improving oil recovery in the development of fields is quite an urgent task.It should be taken into account that hydrophobic reservoirs are common in the oil fields of Western Siberia, and when applying the method of reservoir flooding, this fact should be taken into account and a more detailed approach should be taken to the study of capillary forces to prevent flooding of productive objects. Despite the good knowledge of the West Siberian megabasin, some fundamental issues of its structure and oil and gas potential remain debatable.The article proposes methods for improving oil recovery of the BS10 formation of the Ust-Balykskoye oil field based on the study of capillary pressures in productive reservoir formations, and provides recommendations for the placement of injection wells. The study of the capillary properties of reservoir rocks will significantly improve the efficiency of exploration and field operations in oil fields.


2020 ◽  
Author(s):  
Sudad H Al-Obaidi

The dynamics and performance of major oil deposits in late (final) stage of development of large oil fields are given the current rates of oil recovery. The high oil recoveries are resulted as a consequence of the favorable geological and physical characteristics of the development objects, application of development systems and optimal density well spacing, adequate geological structure, maintain during the process of the development the optimal rates of technological development, the modes of operation of wells and a project of the fund of production wells, continuous improvement of the project systems taking into account the dynamics of the reserves development and the clarification of the geological structure.


2021 ◽  
Vol 73 (06) ◽  
pp. 38-40
Author(s):  
Mojtaba Moradi

As production declines over time, the injection of fluids is required to enhance oil recovery and/or maintain the reservoir pressure. Whether applied at field startup or as a secondary recovery technique, waterflooding can boost oil recovery from less than 30% to 30–50%. The common problems associated with waterflooding include loss of injectivity, premature injector failure, and injection conformance. This can also lead to issues around insufficient voidage replacement, which can result in lower reservoir pressure and the production of fluid with a higher gas/oil ratio. In total field recovery, this ultimately means lower production and oil left untapped in the well. To remediate the issue of conformance, costly and often complex interventions and redrills were traditionally used to restore water-injection capability. Also, passive outflow-control devices have been used successfully to somewhat improve the fluid conformance from injection wells. However, they may fail in reservoirs with complex/dynamic properties including propagating/dilating fractures. Advanced Wells in Injection Wells There are a number of considerations when planning a water-injection completion, particularly around both the rock and fluid properties, as well as the credible risks that could occur, namely: - Uneven displacement of hydrocarbon - Fracture growth short-circuiting injectant-proximal wells - Fracture growth breaching caprock/basement seal - Crossflow, plugging, and solids fill Advanced completion options include deploying passive flow-control devices. For example, inflow-control devices (ICDs) are unable to react to dynamic changes in reservoir/well properties. This often requires production-logging-tool (PLT) logs, distributed temperature sensors, and/or tracers to be run and, if available, to apply the sleeve option. Alternatively, active (intelligent) completions, such as inflow-control valves, can be used, but they tend to be expensive and complicated and are limited to the number of zones. This technique also requires frequent analysis of data from the well to perform such actions. Tendeka, a global specialist in advanced completions, production solutions, and sand control, has developed FloFuse, a new and exclusively autonomous rate-limiting outflow-control device (AOCD) (Fig. 1). Using the analogy and inspiration of a home fuse box, which contains many individual fuses to control various parts of a building, the AOCD can control the excessive rate that passes through a specific section of a well, causing tripping once the threshold is reached. By almost shutting, i.e., significantly choking, the injection fluid into the fractures crossing the well, the AOCD autonomously prevents growth and excessive fluid injection into the thief/fracture zones and maintains a balanced or prescribed injection distribution. Like other flow-control valves, this device should be installed in several compartments in the injection well. Initially, devices operate as normal passive outflow control, but if the injected flow rate through the valve exceeds a designed limit, the device will automatically shut off. This allows the denied fluid to that specific compartment to be distributed among the neighboring compartments.


Sign in / Sign up

Export Citation Format

Share Document