An Interactive 3D Visualization Tool for Reservoir Simulation Data, Including Fluid Flow and Particle Tracking

1992 ◽  
Author(s):  
B.K. Williams ◽  
R.L. Brown
Author(s):  
Dawei Xu ◽  
Lin Wang ◽  
Xin Wang ◽  
Dianquan Li ◽  
Jianpeng Duan ◽  
...  

2020 ◽  
Author(s):  
Petra Gospodnetic ◽  
Markus Rauhut ◽  
Hans Hagen

State of the art surface inspection planning requires an expert approach with a lot of trial and error. Because of the lack of available aiding tools, an engineer building inspection systems must rely heavily on his or her experience. In this work we proposed an interactive 3D visualization tool to help an engineer determine good viewpoints. It can be used both as a standalone tool for manual viewpoint placement or as an interface to the inspection planning algorithms giving the engineer a possibility to evaluate and modify automatically generated plans.


2020 ◽  
Author(s):  
Marc Rautenhaus

<p>Visualization is an important and ubiquitous tool in the daily work of atmospheric researchers and weather forecasters to analyse data from simulations and observations. Visualization research has made much progress in recent years, in particular with respect to techniques for ensemble data, interactivity, 3D depiction, and feature-detection. Transfer of new techniques into the atmospheric sciences, however, is slow.</p><p>Met.3D (https://met3d.wavestoweather.de) is an open-source research software aiming at making novel interactive 3D and ensemble visualization techniques accessible to the atmospheric community. Since its first public release in 2015, Met.3D has been used in multiple visualization research projects targeted at atmospheric science applications, and also has evolved into a feature-rich visual analysis tool facilitating rapid exploration of atmospheric simulation data. The software is based on the concept of “building a bridge” between “traditional” 2D visual analysis techniques and interactive 3D techniques and allows users to analyse their data using combinations of 2D maps and cross-sections, meteorological diagrams and 3D techniques including direct volume rendering, isosurfaces and trajectories, all combined in an interactive 3D context.</p><p>This PICO will provide an overview of the Met.3D project and highlight recent additions and improvements to the software. We will show several examples of how the combination of 2D and 3D visualization elements in an interactive context can be used to explore atmospheric simulation data, including the analysis of forecast errors, analysis of synoptic-scale features including jet-streams and fronts, and analysis of forecast uncertainty in ensemble forecasts.</p>


1993 ◽  
Vol 5 (06) ◽  
pp. 5-10 ◽  
Author(s):  
D.R. Guerillot ◽  
P.A. Swaby

2021 ◽  
Vol 251 ◽  
pp. 03007
Author(s):  
Marilena Bandieramonte ◽  
Riccardo Maria Bianchi ◽  
Joseph Boudreau ◽  
Andrea Dell’Acqua ◽  
Vakhtang Tsulaia

The GeoModel class library for detector description has recently been released as an open-source package and extended with a set of tools to allow much of the detector modeling to be carried out in a lightweight development environment, outside of large and complex software frameworks. These tools include the mechanisms for creating persistent representation of the geometry, an interactive 3D visualization tool, various command-line tools, a plugin system, and XML and JSON parsers. The overall goal of the tool suite is a fast geometry development cycle with quick visual feedback. The tool suite can be built on both Linux and Macintosh systems with minimal external dependencies. It includes useful command-line utilities: gmclash which runs clash detection, gmgeantino which generates geantino maps, and fullSimLight which runs GEANT4 simulation on geometry imported from GeoModel description. The GeoModel tool suite is presently in use in both the ATLAS and FASER experiments. In ATLAS it will be the basis of the LHC Run 4 geometry description.


2018 ◽  
Vol 30 (7) ◽  
pp. 1268 ◽  
Author(s):  
Guodao Sun ◽  
Puyong Huang ◽  
Yipeng Liu ◽  
Ronghua Liang

2018 ◽  
Vol 477 (2) ◽  
pp. 1495-1507 ◽  
Author(s):  
T Dykes ◽  
A Hassan ◽  
C Gheller ◽  
D Croton ◽  
M Krokos

2018 ◽  
pp. 31-63 ◽  
Author(s):  
Lukáš Herman ◽  
Tomáš Řezník ◽  
Zdeněk Stachoň ◽  
Jan Russnák

Various widely available applications such as Google Earth have made interactive 3D visualizations of spatial data popular. While several studies have focused on how users perform when interacting with these with 3D visualizations, it has not been common to record their virtual movements in 3D environments or interactions with 3D maps. We therefore created and tested a new web-based research tool: a 3D Movement and Interaction Recorder (3DmoveR). Its design incorporates findings from the latest 3D visualization research, and is built upon an iterative requirements analysis. It is implemented using open web technologies such as PHP, JavaScript, and the X3DOM library. The main goal of the tool is to record camera position and orientation during a user’s movement within a virtual 3D scene, together with other aspects of their interaction. After building the tool, we performed an experiment to demonstrate its capabilities. This experiment revealed differences between laypersons and experts (cartographers) when working with interactive 3D maps. For example, experts achieved higher numbers of correct answers in some tasks, had shorter response times, followed shorter virtual trajectories, and moved through the environment more smoothly. Interaction-based clustering as well as other ways of visualizing and qualitatively analyzing user interaction were explored.


Sign in / Sign up

Export Citation Format

Share Document