Unique Polycrystalline Diamond Compact (PDC) Cutter Improves Drilling Efficiency

1999 ◽  
Author(s):  
Graham Mensa-Wilmot ◽  
Javier Ramirez
Author(s):  
Alexandr A. Shul’zhenko ◽  
Lucyna Jaworska ◽  
Alexandr N. Sokolov ◽  
Vladislav G. Gargin ◽  
Ludmila A. Romanko

The electrical and physical properties of the electrically conductive super hard material on the basis of polycrystalline diamond and n-layered graphenes obtained at high pressures and temperatures were studied. It was established that the increase in graphene in a polycrystalline diamond compact leads to a sharp decrease in resistance. Wherein the hardness of the samples is slightly inferior to the hardness of diamond poly crystals obtained without the use of graphene.


2013 ◽  
Vol 19 (S2) ◽  
pp. 1050-1051 ◽  
Author(s):  
J.N. Williard ◽  
D.K. Colbert

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


Author(s):  
Yingxin Yang ◽  
Chunliang Zhang ◽  
Lian Chen ◽  
Yong Liu

For improving the drilling efficiency of polycrystalline diamond compact drill bit, a novel polycrystalline diamond compact drill bit is presented with a new rock-breaking method named as cross-scraping. In the novel polycrystalline diamond compact drill bit which is referred to as a composite drill bit, polycrystalline diamond compact cutters are mounted on rotary wheels as major cutting elements, and as a result, mesh-like scraping tracks are formed in the outer radial area of the bottom-hole. Rock-breaking method of the composite drill bit causes both shearing and fracture failure of the bottom-hole rock, which will greatly increase the rock-breaking efficiency and will prolong the bit service life. By analyzing the complex motion of cutters on the composite drill bit, velocity and acceleration models of the cutters, as well as wheel/bit speed ratio model of the bit are established in accordance with the geometric relationship between cutters and bit body in a compound coordinate system. In simulation examples, motion tracks, velocity and acceleration features of the cutter and especially the bottom-hole pattern are analyzed. Further, indoor experiments are conducted to test the mesh-like bottom-hole pattern and rock-breaking features, which have proved the accuracy of the analysis model of the composite drill bit.


1993 ◽  
Vol 115 (4) ◽  
pp. 247-256 ◽  
Author(s):  
A. K. Wojtanowicz ◽  
E. Kuru

An analytical development of a new mechanistic drilling model for polycrystalline diamond compact (PDC) bits is presented. The derivation accounts for static balance of forces acting on a single PDC cutter and is based on assumed similarity between bit and cutter. The model is fully explicit with physical meanings given to all constants and functions. Three equations constitute the mathematical model: torque, drilling rate, and bit life. The equations comprise cutter’s geometry, rock properties drilling parameters, and four empirical constants. The constants are used to match the model to a PDC drilling process. Also presented are qualitative and predictive verifications of the model. Qualitative verification shows that the model’s response to drilling process variables is similar to the behavior of full-size PDC bits. However, accuracy of the model’s predictions of PDC bit performance is limited primarily by imprecision of bit-dull evaluation. The verification study is based upon the reported laboratory drilling and field drilling tests as well as field data collected by the authors.


1985 ◽  
Vol 107 (4) ◽  
pp. 534-542 ◽  
Author(s):  
C. L. Hough ◽  
B. Das

The wear characteristics of polycrystalline diamond compact (PDC) drill bits were investigated in the context of drilling small holes in a hard abrasive medium. An efficient method for measuring wear of the PDC drill bits was developed. The wear test results were grouped or categorized in terms of rotary speed, feed and wear or failure characteristics. Contrary to the three classical wear phases (break-in, uniform wear and rapid breakdown) of the single material cutters, four distinctive wear phases were formed for the PDC cutters: I–break-in, II–diamond wear, III–carbide wear, and IV–rapid breakdown. The characteristics of the wear phases were identified and some suggestions were made to alleviate the wear problem.


Sign in / Sign up

Export Citation Format

Share Document