Case Studies Using Reservoir Characterization To Improve Remediation System Design and Operation

2002 ◽  
Author(s):  
Vivian K. Bust
2013 ◽  
Vol 20 (1) ◽  
pp. 109-116 ◽  
Author(s):  
J. Gardner ◽  
L. Xiong ◽  
Y. Xiao ◽  
J. Gao ◽  
A. R. Post ◽  
...  

Author(s):  
Prashant Srinivasan ◽  
Sanketh Bhat ◽  
Manthram Sivasubramaniam ◽  
Ravi Methekar ◽  
Maruthi Devarakonda ◽  
...  

Large bore reciprocating internal combustion engines are used in a wide variety of applications such as power generation, transportation, gas compression, mechanical drives, and mining. Each application has its own unique requirements that influence the engine design & control strategy. The system architecture & control strategy play a key role in meeting the requirements. Traditionally, control design has come in at a later stage of the development process, when the system design is almost frozen. Furthermore, transient performance requirements have not always been considered adequately at early design stages for large engines, thus limiting achievable controller performance. With rapid advances in engine modeling capability, it has now become possible to accurately simulate engine behavior in steady-states and transients. In this paper, we propose an integrated model-based approach to system design & control of reciprocating engines and outline ideas, processes and real-world case studies for the same. Key benefits of this approach include optimized engine performance in terms of efficiency, transient response, emissions, system and cost optimization, tools to evaluate various concepts before engine build thus leading to significant reduction in development time & cost.


2021 ◽  
Author(s):  
Alexander Kolomytsev ◽  
◽  
Yulia Pronyaeva Pronyaeva ◽  

Most conventional log interpretation technics use the radial model, which was developed for vertical wells and work well in them. But applying this model to horizontal wells can result in false conclusions. The reasons for this are property changes in vertical direction and different depth of investigation (DOI) of logging tools. DOI area probably can include a response from different layers with different properties. All of this complicates petrophysical modeling. The 3D approach for high angle well evaluation (HAWE) is forward modeling in 3D. For this modeling, it is necessary to identify the geological concept near the horizontal well section using multiscale data. The accuracy of modeling depends on the details of the accepted geological model based on the data of borehole images, logs, geosteering inversion, and seismic data. 3D modeling can be applied to improve the accuracy of reservoir characterization, well placement, and completion. The radial model is often useless for HAWE because LWD tools have different DOI and the invasion zone was not formed. But the difference between volumetric and azimuthal measurements is important for comprehensive interpretation because various formations have different properties in vertical directions. Resistivity tools have the biggest DOI. It is important to understand and be able to determine the reason for changes in log response: a change in the properties of the current layer or approaching the layers with other properties. For this, it is necessary to know the distance to the boundaries of formations with various properties and, therefore, to understand the geological structure of the discovered deposits, and such information on the scale of well logs can be obtained either by modeling or by using extra deep resistivity inversion (mapping). The largest amount of multidisciplinary information is needed for modeling purposes - from images and logs to mapping and seismic data. Case studies include successful examples from Western Siberia clastic formations. In frame of the cases, different tasks have been solved: developed geological concept, updated petrophysical properties for STOIIP and completion, and provided solutions during geosteering. Multiscale modeling, which includes seismic, geosteering mapping data, LWD, and imagers, has been used for all cases.


Sign in / Sign up

Export Citation Format

Share Document