scholarly journals A multiplex guide RNA expression system and its efficacy for plant genome engineering

2020 ◽  
Author(s):  
Youngbin Oh ◽  
Hyeonjin Kim ◽  
Bora Lee ◽  
Sang-Gyu Kim

Abstract BackgroundThe Streptococcus pyogenes CRISPR system is composed of a Cas9 endonuclease (SpCas9) and a single-stranded guide RNA (gRNA) harboring a target-specific sequence. Theoretically, SpCas9 proteins could cleave as many targeted loci as gRNAs bind in a genome.ResultsWe introduce a PCR-free multiple gRNA cloning system for editing plant genomes. This method consists of two steps: (1) cloning annealed products of two oligonucleotides harboring target-binding sequence between tRNA and gRNA scaffold sequences in a pGRNA vector; and (2) assembling tRNA-gRNA units from several pGRNA vectors with a plant binary vector containing a SpCas9 expression cassette using the Golden Gate assembly method. We validated the editing efficiency and patterns of the multiplex gRNA expression system in wild tobacco (Nicotiana attenuata) protoplasts and in transformed plants by performing targeted deep sequencing. Two proximal cleavages by SpCas9-gRNA largely increased the editing efficiency and induced large deletions between two cleavage sites.ConclusionsThis multiplex gRNA expression system enables high-throughput production of a single binary vector and increases the efficiency of plant genome editing.

2020 ◽  
Author(s):  
Youngbin Oh ◽  
Bora Lee ◽  
Hyeonjin Kim ◽  
Sang-Gyu Kim

Abstract Background: The Streptococcus pyogenes CRISPR system is composed of a Cas9 endonuclease (SpCas9) and a single-stranded guide RNA (gRNA) harboring a target-specific sequence. Theoretically, SpCas9 proteins could cleave as many targeted loci as gRNAs bind in a genome.Results: We introduce a PCR-free multiple gRNA cloning system for editing plant genomes. This method consists of two steps: (1) cloning the annealed products of two single-stranded oligonucleotide fragments harboring a complimentary target-binding sequence on each strand between tRNA and gRNA scaffold sequences in a pGRNA vector; and (2) assembling tRNA-gRNA units from several pGRNA vectors with a plant binary vector containing a SpCas9 expression cassette using the Golden Gate assembly method. We validated the editing efficiency and patterns of the multiplex gRNA expression system in wild tobacco (Nicotiana attenuata) protoplasts and in transformed plants by performing targeted deep sequencing. Two proximal cleavages by SpCas9-gRNA largely increased the editing efficiency and induced large deletions between two cleavage sites.Conclusions: This multiplex gRNA expression system enables high-throughput production of a single binary vector and increases the efficiency of plant genome editing.


2020 ◽  
Author(s):  
Youngbin Oh ◽  
Bora Lee ◽  
Hyeonjin Kim ◽  
Sang-Gyu Kim

Abstract Background The Streptococcus pyogenes CRISPR system is composed of a Cas9 endonuclease (SpCas9) and a single-stranded guide RNA (gRNA) harboring a target-specific sequence. Theoretically, SpCas9 proteins could cleave as many targeted loci as gRNAs bind in a genome. Results We introduce a PCR-free multiple gRNA cloning system for editing plant genomes. This method consists of two steps: (1) cloning the annealed products of two single-stranded oligonucleotide fragments harboring a complimentary target-binding sequence on each strand between tRNA and gRNA scaffold sequences in a pGRNA vector; and (2) assembling tRNA-gRNA units from several pGRNA vectors with a plant binary vector containing a SpCas9 expression cassette using the Golden Gate assembly method. We validated the editing efficiency and patterns of the multiplex gRNA expression system in wild tobacco (Nicotiana attenuata) protoplasts and in transformed plants by performing targeted deep sequencing. Two proximal cleavages by SpCas9-gRNA largely increased the editing efficiency and induced large deletions between two cleavage sites. Conclusions This multiplex gRNA expression system enables high-throughput production of a single binary vector and increases the efficiency of plant genome editing.


2020 ◽  
Author(s):  
Youngbin Oh ◽  
Bora Lee ◽  
Hyeonjin Kim ◽  
Sang-Gyu Kim

Abstract Background The Streptococcus pyogenes CRISPR system is composed of a Cas9 endonuclease (SpCas9) and a single-stranded guide RNA (gRNA) harboring a target-specific sequence. Theoretically, SpCas9 proteins could cleave as many targeted loci as gRNAs bind in a genome. Results We introduce a PCR-free multiple gRNA cloning system for editing plant genomes. This method consists of two steps: (1) cloning the annealed products of two single-stranded oligonucleotide fragments harboring a complimentary target-binding sequence on each strand between tRNA and gRNA scaffold sequences in a pGRNA vector; and (2) assembling tRNA-gRNA units from several pGRNA vectors with a plant binary vector containing a SpCas9 expression cassette using the Golden Gate assembly method. We validated the editing efficiency and patterns of the multiplex gRNA expression system in wild tobacco (Nicotiana attenuata) protoplasts and in transformed plants by performing targeted deep sequencing. Two proximal cleavages by SpCas9-gRNA largely increased the editing efficiency and induced large deletions between two cleavage sites. Conclusions This multiplex gRNA expression system enables high-throughput production of a single binary vector and increases the efficiency of plant genome editing.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 596 ◽  
Author(s):  
Haroon Butt ◽  
Agnieszka Piatek ◽  
Lixin Li ◽  
Anireddy S. N. Reddy ◽  
Magdy M. Mahfouz

Plant growth responds to various environmental and developmental cues via signaling cascades that influence gene expression at the level of transcription and pre-mRNA splicing. Alternative splicing of pre-mRNA increases the coding potential of the genome from multiexon genes and regulates gene expression through multiple mechanisms. Serine/arginine-rich (SR) proteins, a conserved family of splicing factors, are the key players of alternative splicing and regulate pre-mRNA splicing under stress conditions. The rice (Oryza sativa) genome encodes 22 SR proteins categorized into six subfamilies. Three of the subfamilies are plant-specific with no mammalian orthologues, and the functions of these SR proteins are not well known. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a genome engineering tool that cleaves the target DNA at specific locations directed by a guide RNA (gRNA). Recent advances in CRISPR/Cas9-mediated plant genome engineering make it possible to generate single and multiple functional knockout mutants in diverse plant species. In this study, we targeted each rice SR locus and produced single knockouts. To overcome the functional redundancy within each subfamily of SR genes, we utilized a polycistronic tRNA-gRNA multiplex targeting system and targeted all loci of each subfamily. Sanger sequencing results indicated that most of the targeted loci had knockout mutations. This study provides useful resource materials for understanding the molecular role of SR proteins in plant development and biotic and abiotic stress responses.


Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Youngbin Oh ◽  
Bora Lee ◽  
Hyeonjin Kim ◽  
Sang-Gyu Kim

Author(s):  
Anindya Bandyopadhyay ◽  
Nagesh Kancharla ◽  
vivek javalkote ◽  
santanu dasgupta ◽  
Thomas Brutnell

Global population is predicted to approach 10 billion by 2050, an increase of over 2 billion from today. To meet the demands of growing, geographically and socio-economically diversified nations, we need to diversity and expand agricultural production. This expansion of agricultural productivity will need to occur under increasing biotic, and environmental constraints driven by climate change. Clustered regularly interspaced short palindromic repeats-site directed nucleases (CRISPR-SDN) and similar genome editing technologies will likely be key enablers to meet future agricultural needs. While the application of CRISPR-Cas9 mediated genome editing has led the way, the use of CRISPR-Cas12a is also increasing significantly for genome engineering of plants. The popularity of the CRISPR-Cas12a, the type V (class-II) system, is gaining momentum because of its versatility and simplified features. These include the use of a small guide RNA devoid of trans-activating crispr RNA (tracrRNA), targeting of T-rich regions of the genome where Cas9 is not suitable for use, RNA processing capability facilitating simpler multiplexing, and its ability to generate double strand breaks (DSB) with staggered ends. Many monocot and dicot species have been successfully edited using this Cas12a system and further research is ongoing to improve its efficiency in plants, including improving the temperature stability of the Cas12a enzyme, identifying new variants of Cas12a or synthetically producing Cas12a with flexible PAM sequences. In this review we provide a comparative survey of CRISPR-Cas12a and Cas9, and provide a perspective on applications of CRISPR-Cas12 in agriculture.


2021 ◽  
Author(s):  
Tien Van Vu ◽  
Jihae Kim ◽  
Swati Das ◽  
Jae-Yean Kim

Precision genome editing is highly desired for crop improvement. The recently emerged CRISPR/Cas technology offers great potential applications in precision plant genome engineering. A prime editing (PE) approach combining a reverse transcriptase (RT) with a Cas9 nickase and a priming extended guide RNA has shown a high frequency for precise genome modification in mammalian cells and several plant species. However, the applications of the PE approach in dicot plants are still limited and inefficient. We designed and tested prime editors for precision editing of a synthetic sequence in a transient assay and for desirable alleles of 10 loci in tomato by stable transformation. However, our data obtained by targeted deep sequencing also revealed inefficient PE activity in both the tobacco and tomato systems. Further assessment of the activities of the PE components uncovered potential reasons for the inefficiency of the PE complexes. These data could also help explain the recent successes of some prime editors in plants using improved expression systems. Our work provides an important clue for the application of the PE approach in crop improvement.


2019 ◽  
Vol 20 (5) ◽  
pp. 1155 ◽  
Author(s):  
Guillaume Bernard ◽  
David Gagneul ◽  
Harmony Alves Dos Santos ◽  
Audrey Etienne ◽  
Jean-Louis Hilbert ◽  
...  

CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated with protein CAS9) is a genome-editing tool that has been extensively used in the last five years because of its novelty, affordability, and feasibility. This technology has been developed in many plant species for gene function analysis and crop improvement but has never been used in chicory (Cichorium intybus L.). In this study, we successfully applied CRISPR/Cas9-mediated targeted mutagenesis to chicory using Agrobacterium rhizogenes-mediated transformation and protoplast transfection methods. A U6 promoter (CiU6-1p) among eight predicted U6 promoters in chicory was selected to drive sgRNA expression. A binary vector designed to induce targeted mutations in the fifth exon of the chicory phytoene desaturase gene (CiPDS) was then constructed and used to transform chicory. The mutation frequency was 4.5% with the protoplast transient expression system and 31.25% with A. rhizogenes-mediated stable transformation. Biallelic mutations were detected in all the mutant plants. The use of A. rhizogenes-mediated transformation seems preferable as the regeneration of plants is faster and the mutation frequency was shown to be higher. With both transformation methods, foreign DNA was integrated in the plant genome. Hence, selection of vector (transgene)-free segregants is required. Our results showed that genome editing with CRISPR/Cas9 system can be efficiently used with chicory, which should facilitate and accelerate genetic improvement and functional biology.


Science ◽  
2013 ◽  
Vol 343 (6166) ◽  
pp. 80-84 ◽  
Author(s):  
Tim Wang ◽  
Jenny J. Wei ◽  
David M. Sabatini ◽  
Eric S. Lander

The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingxiao Zhang ◽  
Qiurong Ren ◽  
Xu Tang ◽  
Shishi Liu ◽  
Aimee A. Malzahn ◽  
...  

AbstractCRISPR-Cas12a is a promising genome editing system for targeting AT-rich genomic regions. Comprehensive genome engineering requires simultaneous targeting of multiple genes at defined locations. Here, to expand the targeting scope of Cas12a, we screen nine Cas12a orthologs that have not been demonstrated in plants, and identify six, ErCas12a, Lb5Cas12a, BsCas12a, Mb2Cas12a, TsCas12a and MbCas12a, that possess high editing activity in rice. Among them, Mb2Cas12a stands out with high editing efficiency and tolerance to low temperature. An engineered Mb2Cas12a-RVRR variant enables editing with more relaxed PAM requirements in rice, yielding two times higher genome coverage than the wild type SpCas9. To enable large-scale genome engineering, we compare 12 multiplexed Cas12a systems and identify a potent system that exhibits nearly 100% biallelic editing efficiency with the ability to target as many as 16 sites in rice. This is the highest level of multiplex edits in plants to date using Cas12a. Two compact single transcript unit CRISPR-Cas12a interference systems are also developed for multi-gene repression in rice and Arabidopsis. This study greatly expands the targeting scope of Cas12a for crop genome engineering.


Sign in / Sign up

Export Citation Format

Share Document