scholarly journals Estimating remaining carbon budgets using temperature responses informed by CMIP6

Author(s):  
Martin Rypdal ◽  
Niklas Boers ◽  
Hege-Beate Fredriksen ◽  
Kai-Uwe Eiselt ◽  
Andreas Johansen ◽  
...  

Abstract A remaining carbon budget (RCB) estimates how much CO2 we can emit and still reach a specific temperature target. The RCB concept is attractive since it easily communicates to the public and policymakers, but RCBs are also subject to uncertainties. The expected warming levels for a given carbon budget has a wide uncertainty range, which increases with less ambitious targets, i.e., with higher CO2 emissions and temperatures. Leading causes of RCB uncertainty are the future non-CO2 emissions, Earth system feedbacks, and the spread in the climate sensitivity among climate models. The latter is investigated in this paper, using a simple carbon cycle model and emulators of the temperature responses of the Earth System Models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble. Driving 41 CMIP6 emulators with 127 different emission scenarios for the 21st century, we find almost perfect linear relationship between maximum global surface air temperature and cumulative carbon emissions, allowing unambiguous estimates of RCB for each CMIP6 model. The range of these estimates over the model ensemble is a measure of the uncertainty in the RCB arising from the range in climate sensitivity over this ensemble, and it is suggested that observational constraints imposed on the transient climate response in the model ensemble can reduce uncertainty in RCB estimates.

2021 ◽  
Vol 3 ◽  
Author(s):  
Martin Rypdal ◽  
Niklas Boers ◽  
Hege-Beate Fredriksen ◽  
Kai-Uwe Eiselt ◽  
Andreas Johansen ◽  
...  

A remaining carbon budget (RCB) estimates how much CO2 we can emit and still reach a specific temperature target. The RCB concept is attractive since it easily communicates to the public and policymakers, but RCBs are also subject to uncertainties. The expected warming levels for a given carbon budget has a wide uncertainty range, which increases with less ambitious targets, i.e., with higher CO2 emissions and temperatures. Leading causes of RCB uncertainty are the future non-CO2 emissions, Earth system feedbacks, and the spread in the climate sensitivity among climate models. The latter is investigated in this paper, using a simple carbon cycle model and emulators of the temperature responses of the Earth System Models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble. Driving 41 CMIP6 emulators with 127 different emission scenarios for the 21st century, we find almost perfect linear relationship between maximum global surface air temperature and cumulative carbon emissions, allowing unambiguous estimates of RCB for each CMIP6 model. The range of these estimates over the model ensemble is a measure of the uncertainty in the RCB arising from the range in climate sensitivity over this ensemble, and it is suggested that observational constraints imposed on the transient climate response in the model ensemble can reduce uncertainty in RCB estimates.


2021 ◽  
Author(s):  
Martin Rypdal ◽  
Niklas Boers ◽  
Hege-Beate Fredriksen ◽  
Kai-Uwe Eiselt ◽  
Andreas Johansen ◽  
...  

Abstract A remaining carbon budget (RCB) estimates how much CO2 we can emit and still reach a specific temperature target. The RCB concept is attractive since it easily communicates to the public and policymakers, but RCBs are also subject to uncertainties. The expected warming levels for a given carbon budget has a wide uncertainty range, which increases with less ambitious targets, i.e., with higher CO2 emissions and temperatures. Leading causes of RCB uncertainty are the future non-CO2 emissions, Earth system feedbacks, and the spread in the climate sensitivity among climate models. The latter is investigated in this paper, using a simple carbon cycle model and emulators of the temperature responses of the Earth System Models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble. It is shown that the transient climate response to cumulative emissions of carbon (TCRE) is approximately proportional to the transient climate response (TCR), suggesting that observational constraints imposed on climate sensitivity in the model ensemble can reduce uncertainty in RCB estimates.


2021 ◽  
Author(s):  
Martin Rypdal ◽  
Niklas Boers ◽  
Hege-Beate Fredriksen ◽  
Kai-Uwe Eiselt ◽  
Andreas Johansen ◽  
...  

Abstract A remaining carbon budget (RCB) estimates how much CO2 we can emit and still reach a specific temperature target. The RCB concept is attractive since it easily communicates to the public and policymakers, but RCBs are also subject to uncertainties. The expected warming levels for a given carbon budget has a wide uncertainty range, which we show here to increase with less ambitious targets, i.e., with higher CO2 emissions and temperatures. Leading causes of RCB uncertainty are the future non-CO2 emissions, Earth system feedbacks, and the spread in the climate sensitivity among climate models. The latter is investigated in this paper, using simple emulators of Earth System Models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble. It is shown that the transient climate response to cumulative emissions of carbon (TCRE) is approximately proportional to the effective equilibrium climate sensitivity (ECS). For temperature targets between 1.5-3.0 degrees C, the models exhibiting low ECS increase RCB by a factor two compared to those with high sensitivity, suggesting that observational constraints imposed on the ECS in the model ensemble also will reduce uncertainty in the RCB estimates.


2020 ◽  
Author(s):  
Martin Rypdal ◽  
Niklas Boers ◽  
Hege-Beate Fredriksen ◽  
Kai-Uwe Eiselt ◽  
Andreas Johansen ◽  
...  

Abstract A remaining carbon budget (RCB) estimates how much CO2 we can emit and still reach a specific temperature target. The RCB concept is attractive since it easily communicates to the public and policymakers, but RCBs are also subject to uncertainties. The expected warming levels for a given carbon budget has a wide uncertainty range, which we show here to increase with less ambitious targets, i.e., with higher CO2 emissions and temperatures. We demonstrate that the leading cause of the revealed RCB uncertainty is the spread in the equilibrium climate sensitivity (ECS) among climate models. In the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble, the models with the lower ECS predict an RCB that is twice as high as that of models with the higher ECS, for temperature targets between 1.5-3.0°C.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kaoru Tachiiri

AbstractThe transient climate response to cumulative carbon emissions (TCRE) is a key metric in estimating the remaining carbon budget for given temperature targets. However, the TCRE has a small scenario dependence that can be non-negligible for stringent temperature targets. To investigate the parametric correlations and scenario dependence of the TCRE, the present study uses a 512-member ensemble of an Earth system model of intermediate complexity (EMIC) perturbing 11 physical and biogeochemical parameters under scenarios with steady increases of 0.25%, 0.5%, 1%, 2%, or 4% per annum (ppa) in the atmospheric CO2 concentration (pCO2), or an initial increase of 1% followed by an annual decrease of 1% thereafter. Although a small difference of 5% (on average) in the TCRE is observed between the 1-ppa and 0.5-ppa scenarios, a significant scenario dependence is found for the other scenarios, with a tendency toward large values in gradual or decline-after-a-peak scenarios and small values in rapidly increasing scenarios. For all scenarios, correlation analysis indicates a remarkably large correlation between the equilibrium climate sensitivity (ECS) and the relative change in the TCRE, which is attributed to the longer response time of the high ECS model. However, the correlations of the ECS with the TCRE and its scenario dependence for scenarios with large pCO2 increase rates are slightly smaller, and those of biogeochemical parameters such as plant respiration and the overall pCO2–carbon cycle feedback are larger, than in scenarios with gradual increases. The ratio of the TCREs under the overshooting (i.e., 1-ppa decrease after a 1-ppa increase) and 1-ppa increase only scenarios had a clear positive relation with zero-emission commitments. Considering the scenario dependence of the TCRE, the remaining carbon budget for the 1.5 °C target could be reduced by 17 or 22% (before and after considering the unrepresented Earth system feedback) for the most extreme case (i.e., the 67th percentile when using the 0.25-ppa scenario as compared to the 1-ppa increase scenario). A single ensemble EMIC is also used to indicate that, at least for high ECS (high percentile) cases, the scenario dependence of the TCRE should be considered when estimating the remaining carbon budget.


2020 ◽  
Vol 2 ◽  
Author(s):  
Peter Köhler

The CO2 removal model inter-comparison (CDRMIP) has been established to approximate the usefulness of climate mitigation by some well-defined negative emission technologies. I here analyze ocean alkalinization in a high CO2 world (emission scenario SSP5-85-EXT++ and CDR-ocean-alk within CDRMIP) for the next millennia using a revised version of the carbon cycle model BICYCLE, whose long-term feedbacks are calculated for the next 1 million years. The applied model version not only captures atmosphere, ocean, and a constant marine and terrestrial biosphere, but also represents solid Earth processes, such as deep ocean CaCO3 accumulation and dissolution, volcanic CO2 outgassing, and continental weathering. In the applied negative emission experiment, 0.14 Pmol/yr of alkalinity—comparable to the dissolution of 5 Pg of olivine per year—is entering the surface ocean starting in year 2020 for either 50 or 5000 years. I find that the cumulative emissions of 6,740 PgC emitted until year 2350 lead to a peak atmospheric CO2 concentration of nearly 2,400 ppm in year 2326, which is reduced by only 200 ppm by the alkalinization experiment. Atmospheric CO2 is brought down to 400 or 300 ppm after 2730 or 3480 years of alkalinization, respectively. Such low CO2 concentrations are reached without ocean alkalinization only after several hundreds of thousands of years, when the feedbacks from weathering and sediments bring the part of the anthropogenic emissions that stays in the atmosphere (the so-called airborne fraction) below 4%. The efficiency of carbon sequestration by this alkalinization approach peaks at 9.7 PgC per Pmol of alkalinity added during times of maximum anthropogenic CO2 emissions and slowly declines to half this value 2000 years later due to the non-linear marine chemistry response and ocean-sediment processes. In other words, ocean alkalinization sequesters carbon only as long as the added alkalinity stays in the ocean. To understand the basic model behavior, I analytically explain why in the simulation results a linear relationship in the transient climate response (TCR) to cumulative emissions is found for low emissions (similarly as for more complex climate models), which evolves for high emissions to a non-linear relation.


2018 ◽  
Vol 31 (15) ◽  
pp. 6051-6071 ◽  
Author(s):  
Nicholas Lewis ◽  
Judith Curry

Energy budget estimates of equilibrium climate sensitivity (ECS) and transient climate response (TCR) are derived based on the best estimates and uncertainty ranges for forcing provided in the IPCC Fifth Assessment Report (AR5). Recent revisions to greenhouse gas forcing and post-1990 ozone and aerosol forcing estimates are incorporated and the forcing data extended from 2011 to 2016. Reflecting recent evidence against strong aerosol forcing, its AR5 uncertainty lower bound is increased slightly. Using an 1869–82 base period and a 2007–16 final period, which are well matched for volcanic activity and influence from internal variability, medians are derived for ECS of 1.50 K (5%–95% range: 1.05–2.45 K) and for TCR of 1.20 K (5%–95% range: 0.9–1.7 K). These estimates both have much lower upper bounds than those from a predecessor study using AR5 data ending in 2011. Using infilled, globally complete temperature data give slightly higher estimates: a median of 1.66 K for ECS (5%–95% range: 1.15–2.7 K) and 1.33 K for TCR (5%–95% range: 1.0–1.9 K). These ECS estimates reflect climate feedbacks over the historical period, assumed to be time invariant. Allowing for possible time-varying climate feedbacks increases the median ECS estimate to 1.76 K (5%–95% range: 1.2–3.1 K), using infilled temperature data. Possible biases from non–unit forcing efficacy, temperature estimation issues, and variability in sea surface temperature change patterns are examined and found to be minor when using globally complete temperature data. These results imply that high ECS and TCR values derived from a majority of CMIP5 climate models are inconsistent with observed warming during the historical period.


2021 ◽  
Author(s):  
Paul Clements

Abstract The Intergovernmental Panel on Climate Change (IPCC), the authority for estimating a carbon budget for keeping to the Paris Agreement’s 1.5—2°C target for limiting global warming, has indicated a budget of 580—1170 gigatons (Gt) of carbon dioxide (CO2) from 2018. This budget is based largely on Earth system models using data from the instrumental record over the industrial period. During the prior 800,000 years, however, a range of 120 parts per million (ppm) in atmospheric CO2 was associated with about a 6°C change in temperature, while temperature has only risen about 1°C with the 130 ppm increase in atmospheric CO2 in the industrial period. The paleoclimate record indicates that the anthropogenic increase in CO2 up to the present commits Earth to significant additional warming, such as from reduced albedo as Arctic sea ice melts and further CO2 release from vegetative stores. Instrumental data and model updates also indicate greater warming from these sources than IPCC models predict. Additionally, reductions in CO2 emissions to meet the Paris warming target will also reduce cooling from aerosols, which the IPCC may also have underestimated. Together, these factors indicate that CO2 emissions consistent with the IPCC’s carbon budget are likely to lead to at least 2—2.5°C global warming. I draw on the sustained critique of IPCC findings by Hansen and his colleagues, who have argued that the paleoclimate should be considered on par with Earth system models in climate analysis, and for more ambitious targets for reducing CO2 emissions.


2018 ◽  
Vol 11 (6) ◽  
pp. 2273-2297 ◽  
Author(s):  
Christopher J. Smith ◽  
Piers M. Forster ◽  
Myles Allen ◽  
Nicholas Leach ◽  
Richard J. Millar ◽  
...  

Abstract. Simple climate models can be valuable if they are able to replicate aspects of complex fully coupled earth system models. Larger ensembles can be produced, enabling a probabilistic view of future climate change. A simple emissions-based climate model, FAIR, is presented, which calculates atmospheric concentrations of greenhouse gases and effective radiative forcing (ERF) from greenhouse gases, aerosols, ozone and other agents. Model runs are constrained to observed temperature change from 1880 to 2016 and produce a range of future projections under the Representative Concentration Pathway (RCP) scenarios. The constrained estimates of equilibrium climate sensitivity (ECS), transient climate response (TCR) and transient climate response to cumulative CO2 emissions (TCRE) are 2.86 (2.01 to 4.22) K, 1.53 (1.05 to 2.41) K and 1.40 (0.96 to 2.23) K (1000 GtC)−1 (median and 5–95 % credible intervals). These are in good agreement with the likely Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) range, noting that AR5 estimates were derived from a combination of climate models, observations and expert judgement. The ranges of future projections of temperature and ranges of estimates of ECS, TCR and TCRE are somewhat sensitive to the prior distributions of ECS∕TCR parameters but less sensitive to the ERF from a doubling of CO2 or the observational temperature dataset used to constrain the ensemble. Taking these sensitivities into account, there is no evidence to suggest that the median and credible range of observationally constrained TCR or ECS differ from climate model-derived estimates. The range of temperature projections under RCP8.5 for 2081–2100 in the constrained FAIR model ensemble is lower than the emissions-based estimate reported in AR5 by half a degree, owing to differences in forcing assumptions and ECS∕TCR distributions.


2019 ◽  
Author(s):  
Benjamin Sanderson

Abstract. Can we summarize uncertainties in global response to greenhouse gas forcing with a single number? Here we assess the degree to which traditional metrics are related to future warming indices using an ensemble of simple climate models together with results from CMIP5 and CMIP6. We consider Effective Climate Sensitivity (EffCS), Transient Climate Response at CO2 quadrupling (T140) and a proposed simple metric of temperature change 140 years after a quadrupling of carbon dioxide (A140). In a perfectly equilibrated model, future temperatures under a non-mitigation scenario are almost perfectly described by T140, whereas in a strongly mitigated future, both ECS and T140 are found to be poor predictors of 21st century warming, and future temperatures are better correlated with A140. However, we show that T140 and EffCS calculated in full CMIP simulations are subject to errors arising from control model drift and internal variability. Simulating these factors in the simple model leads to 30 % relative error in the measured value of T140, but only a 10 % error for EffCS. As such, measured values of EffCS can be better correlated with true TCR than measured values of TCR itself. We propose that this could be an explanatory factor in the previously noted surprising result that EffCS is a better predictor than TCR of future transient warming under RCP8.5.


Sign in / Sign up

Export Citation Format

Share Document