scholarly journals On Secrecy Outage Probability for Downlink NOMA Systems With Relay-Antenna Selection

Author(s):  
Shu Xu ◽  
Chen Liu ◽  
Hong Wang ◽  
Mujun Qian ◽  
Wenfeng Sun

Abstract Secure transmission is essential for future non-orthogonal multiple access (NOMA) system. This paper investigates relay-antenna selection (RAS) to enhance physical-layer security (PLS) of cooperative NOMA system in the presence of an eavesdropper, where multiple antennas are deployed at the relays, the users, and the eavesdropper. In order to reduce expense on radio frequency (RF) chains, selection combining (SC) is employed at both the relays and the users, whilst the eavesdropper employs either maximal-ratio combining (MRC) or selection combining (SC) to process the received signals. Under the condition that the channel state information (CSI) of the eavesdropping channel is available or unavailable, two e↵ective relay-antenna selection schemes are proposed. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed relay-antenna selection schemes. In order to gain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. In simulations, it is demonstrated that the theoretical results match well with the simulation results and the SOP of the proposed schemes is less than that of the conventional orthogonal multiple access (OMA) scheme obviously.

2020 ◽  
Vol 10 (5) ◽  
pp. 1840 ◽  
Author(s):  
Zhihui Shang ◽  
Tao Zhang ◽  
Yueming Cai ◽  
Weiwei Yang ◽  
Hao Wu ◽  
...  

This paper studies the secure transmission in the dual-hop cognitive wiretap networks, where the secondary transmitter (Alice) aims to transmit confidential information to the secondary receiver (Bob) in the face of a multi-antenna relay (Relay), while the malicious eavesdropper (Eve) is used to eavesdrop the confidential information from Alice and Relay. To improve security, we design two transmission schemes, namely maximal-ratio combining/maximal-ratio transmission-selection combining (MRC/MRT-SC) with half-duplex (HD) receiver and maximal-ratio combining-zero forcing beamforming/maximal-ratio transmission-selection combining-zero forcing beamforming (MRC-ZFB/MRT-SC-ZFB) with full-duplex (FD) receiver. To evaluate the secrecy performance obtained from the proposed schemes comprehensively, the new closed-form and simple asymptotic expressions for the secrecy outage probability (SOP) and secrecy throughput (ST) of our considered networks with MRC-ZFB/MRT-SC-ZFB and MRC/MRT-SC schemes are derived, respectively. Thus, we explore the effect of various schemes on system secrecy performance in terms of SOP and ST. Analytical results and numerical simulations demonstrate that MRC-ZFB/MRT-SC-ZFB achieves better performance in the two proposed schemes. In particular, we show that the FD receiver plays a crucial role in designing the cognitive wiretap networks for protecting the legitimate link against attack from the malicious eavesdropping.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1160 ◽  
Author(s):  
Phu Tin ◽  
Pham Minh Nam ◽  
Tran Trung Duy ◽  
Phuong Tran ◽  
Miroslav Voznak

In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dan Deng ◽  
Chao Li ◽  
Lisheng Fan ◽  
Xin Liu ◽  
Fasheng Zhou

This paper studies the impacts of antenna selection algorithms in decode-and-forward (DF) cooperative nonorthogonal multiple access (NOMA) networks, where the secure information from the relay can be overheard by an eavesdropper in the networks. In order to ensure the secure transmission, an optimal antenna selection algorithm is proposed to choose one best relay’s antenna to assist the secure transmission. We study the impact of antenna selection on the system secure communication through deriving the analytical expression of the secrecy outage probability along with the asymptotic expression in the high regime of signal-to-noise ratio (SNR) and main-to-eavesdropper ratio (MER). From the analytical and asymptotic expressions, we find that the system secure performance is highly dependent on the system parameters such as the number of antennas at the relay, SNR, and MER. In particular, the secrecy diversity order of the system is equal to the antenna number, when the interference from the second user is limited.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xuehua Li ◽  
Yingjie Pei ◽  
Huan Jiang ◽  
Xinwei Yue ◽  
Yafei Wang ◽  
...  

Mobile edge computing (MEC) is becoming more and more popular because of improving computing power in virtual reality, augmented reality, unmanned driving, and other fields. This paper investigates a nonorthogonal multiple access- (NOMA-) based MEC system, which is under imperfect channel state information (ipCSI). In this system model, a pair of users offloads their tasks to the MEC server with the existence of an eavesdropper (Eve). To evaluate the impact of Eve on the performance of the NOMA-MEC system, the secrecy outage probability (SOP) expressions for two users with the conditions of imperfect CSI and perfect channel state information (pCSI) are derived. In addition, both throughput and energy efficiency are discussed in the delay-limited transmission mode. Simulation results reveal that (1) due to the influence of channel estimation errors, the secrecy outage behaviors of two users under ipCSI conditions are worse than those of users with pCSI; (2) the secrecy performance of NOMA-MEC is superior to orthogonal multiple access- (OMA-) aided MEC systems; and (3) the NOMA-MEC systems have the ability to attain better system throughput and energy efficiency compared with OMA-MEC.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772093346
Author(s):  
Xin Fan ◽  
Yan Huo

As Internet of Things (IoT) has boomed in recent years, many security issues have also been exposed. Focusing on physical layer security in wireless Internet of Things network communication, a series of security methods have been widely studied. Nevertheless, cooperative jamming methods in physical layer security to fight against collusive eavesdroppers have not been thoroughly studied yet. In this article, we study a cooperative-jamming-based physical layer secure transmission scheme for Internet of Things wireless networks in the presence of collusive eavesdroppers. We design a cooperative jamming strategy without knowing the channel state information of eavesdroppers. Considering the cooperation of multiple nodes with multiple antennas, this strategy can maximize the signal-to-interference-plus-noise ratio at an actuator (legitimate receiver). Meanwhile, the generated cooperative jamming signals can reduce the signal-to-interference-plus-noise ratio at eavesdroppers. To explore the theoretical security performance of our strategy, we perform a secrecy outage probability analysis and an asymptotic analysis. In the cases of cooperative jamming and without cooperative jamming, the closed-form expressions of the secrecy outage probability are deduced, and the influence of system parameters on the secrecy outage probability becomes more intuitive through a strict mathematical asymptotic behavior analysis. In addition, considering the energy limitation of Internet of Things devices, we propose a power allocation algorithm to minimize the total transmission power given the security requirements. The numerical results show the effectiveness of our schemes and are consistent with the theoretical analysis.


Author(s):  
Marcos E. P. Monteiro ◽  
Joao Luiz Rebelatto ◽  
Richard Demo Souza ◽  
Ohara K. Rayel ◽  
Guilherme Luiz Moritz ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Zhongwu Xiang ◽  
Weiwei Yang ◽  
Yueming Cai ◽  
Yunpeng Cheng ◽  
Heng Wu ◽  
...  

This paper exploits nonorthogonal multiple access (NOMA) to enhance the uplink secure transmission in Internet of Things (IoT) networks. Considering the different intercept ability of eavesdroppers (Eve), secrecy performances of both strong and weak Eve wiretap scenarios have been investigated. In strong Eve wiretap scenario (SWS), Eve is assumed to be powerful enough to decode message without interference and, in weak Eve wiretap scenario (WWS), Eve is assumed to have significant demodulation capability constraint. The new closed-form expressions of joint connection outage probability (JCOP), joint secrecy outage probability (JSOP), and sum secrecy throughput (SST) are derived in these two scenarios to indicate the impact of parameters, i.e., transmit power, codeword rate, and the placement of devices, on security performance. In order to demonstrate the superiority of NOMA, we also investigate the secrecy performance of orthogonal multiple access (OMA) system as a benchmark. Analysis results show that the performance in WWS is always better than that in SWS and, in low signal-to-noise ratio (SNR) or high codeword rate region, the performances of these two scenarios are close. In addition, we present the condition that NOMA outperforms OMA in terms of SST. Moreover, the placements of devices are significant to the SST performance of NOMA system. The suboptimal device placement scheme has been designed to maximize SST. Analysis results demonstrate that when Eve is far away from legal users, the suboptimal results tend to optimal.


2021 ◽  
Vol 10 (6) ◽  
pp. 3274-3281
Author(s):  
Dinh-Thuan Do ◽  
Minh-Sang Van Nguyen

In this paper, we study uplink-downlink non-orthogonal multiple access (NOMA) systems by considering the secure performance at the physical layer. In the considered system model, the base station acts a relay to allow two users at the left side communicate with two users at the right side. By considering imperfect channel state information (CSI), the secure performance need be studied since an eavesdropper wants to overhear signals processed at the downlink. To provide secure performance metric, we derive exact expressions of secrecy outage probability (SOP) and and evaluating the impacts of main parameters on SOP metric. The important finding is that we can achieve the higher secrecy performance at high signal to noise ratio (SNR). Moreover, the numerical results demonstrate that the SOP tends to a constant at high SNR. Finally, our results show that the power allocation factors, target rates are main factors affecting to the secrecy performance of considered uplink-downlink NOMA systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yue Tian ◽  
Xianling Wang ◽  
Zhanwei Wang

The conventional nonorthogonal multiple access (NOMA) strategy has secrecy challenge in coordinated multipoint (CoMP) networks. Under the secrecy considerations, this paper focuses on the security-based NOMA system, which aims to improve the physical layer security issues of conventional NOMA in the coordinated multipoint (NOMA-CoMP) networks. The secrecy performance of S-NOMA in CoMP, that is, the secrecy sum-rate and the secrecy outage probability, is analysed. In contrast to the conventional NOMA (C-NOMA), the results show that the proposed S-NOMA outperforms C-NOMA in terms of the secrecy outage probability and security-based effective sum-rate.


2020 ◽  
Vol 13 (5) ◽  
pp. 987-998
Author(s):  
Khyati Chopra ◽  
Ranjan Bose ◽  
Anupam Joshi

Background:: Based on the idea of cooperative communication, recently a lot of attention has been drawn to cooperative spectrum access for the secure information transmission in a Cognitive Radio Network (CRN). Security is one of the most important aspects of these networks, as due to their open and dynamic nature, they are extremely vulnerable to malicious behavior. Cooperative cognitive radio has emerged as a dynamic spectrum access technique, where an unlicensed (secondary) user is allowed to simultaneously access the licensed channels dedicated to a Primary User (PU), as long as the Quality of Service (QoS) of primary communication is not affected. Method:: This paper investigates the secrecy outage performance of threshold-based cognitive decode-andforward relay network, with interference constraints from primary licensed user. Threshold-based relaying is considered where; the source message is successfully decoded by the relay, only if the received SNR satisfies the particular threshold. Outage probability expressions have been derived for the worst-case scenario, where only the eavesdropper can achieve the advantage of diversity. The Selection Combining (SC) diversity scheme is employed only at the secondary eavesdropper. Results:: The system secrecy performance is better for SC diversity scheme at the eavesdropper than Maximal Ratio Combining (MRC) diversity scheme, as MRC has better diversity performance than SC. We have shown that the improvement in desired secrecy rate, predetermined threshold, eavesdropper channel quality and interference constraints affect the secrecy performance of the cognitive radio system. The outage probability decreases accordingly with an increase in the maximum tolerable interference level at primary destination. The outage probability of Optimal relay Selection (OS) scheme is derived for a multi-relay system, when either the Instantaneous Channel State Information (ICSI) or the Statistical Channel State Information (SCSI) is available. We have shown that the secrecy performance of the OS with ICSI of the system is better than with SCSI. Also, the OS improves the performance of the multi-relay system, when the number of relays is increased. Conclusion:: The secrecy outage probability of threshold-based DF underlay cognitive relay network is evaluated. Both interference and maximum transmit power constraints are considered at secondary source and secondary relay. Also, the relay can successfully decode the message, only if it meets the pre-defined threshold. We have investigated the performance of MRC and SC diversity schemes at the secondary eavesdropper and have shown that the system secrecy performance is better for SC than MRC, as MRC has better diversity performance than SC. We have shown that the system secrecy performance is significantly affected by the required secrecy rate, pre-defined threshold, interference constraints and choice of diversity scheme (MRC/SC) at the eavesdropper. The outage probability of OS scheme is derived for a multi-relay system, when either the ICSI or the SCSI is available. We have shown that the secrecy performance of the OS with ICSI of the system is better than with SCSI. Also, the OS improves the performance of the multi-relay system, when the number of relays is increased.


Sign in / Sign up

Export Citation Format

Share Document