scholarly journals Myelin Water Fraction in Relation To Fractional Anisotropy and Reading in 10-Year-Old Children

Author(s):  
Maria Economou ◽  
Thibo Billiet ◽  
Jan Wouters ◽  
Pol Ghesquière ◽  
Jolijn Vanderauwera ◽  
...  

Abstract Diffusion-weighted imaging studies have repeatedly shown that white matter correlates with reading throughout development. However, the neurobiological interpretation of this relationship is constrained by the limited microstructural specificity of diffusion imaging. A critical component of white matter microstructure is myelin, which can be investigated noninvasively using MRI. Here, diffusion-weighted as well as myelin water imaging were applied to examine the links of myelin water fraction (MWF) with fractional anisotropy (FA; a common diffusion index) and reading ability in 10-year-old children (n = 69). The results replicate previous reports on a positive relationship between FA and MWF, which is significant in dorsal but not ventral tracts. Moreover, our findings revealed a negative correlation between word reading and MWF in left reading-related white matter tracts. Altogether, this study contributes important insights into the role of myelin-related processes in the relationship between reading and white matter structure.

2017 ◽  
Author(s):  
Yaniv Assaf ◽  
Heidi Johansen-Berg ◽  
Michel Thiebaut de Schotten

AbstractDiffusion weighted imaging has further pushed the boundaries of neuroscience by allowing us to peer farther into the white matter microstructure of the living human brain. By doing so, it has provided answers to fundamental neuroscientific questions, launching a new field of research that had been largely inaccessible. We will briefly summarise key questions, that have historically been raised in neuroscience, concerning the brain’s white matter. We will then expand on the benefits of diffusion weighted imaging and its contribution to the fields of brain anatomy, functional models and plasticity. In doing so, this review will highlight the invaluable contribution of diffusion weighted imaging in neuroscience, present its limitations and put forth new challenges for the future generations who may wish to exploit this powerful technology to gain novel insights.


2017 ◽  
Vol 29 (9) ◽  
pp. 1509-1520 ◽  
Author(s):  
Claudia Metzler-Baddeley ◽  
Sonya Foley ◽  
Silvia de Santis ◽  
Cyril Charron ◽  
Adam Hampshire ◽  
...  

Adaptive working memory (WM) training may lead to cognitive benefits that are associated with white matter plasticity in parietofrontal networks, but the underlying mechanisms remain poorly understood. We investigated white matter microstructural changes after adaptive WM training relative to a nonadaptive comparison group. Microstructural changes were studied in the superior longitudinal fasciculus, the main parietofrontal connection, and the cingulum bundle as a comparison pathway. MRI-based metrics were the myelin water fraction and longitudinal relaxation rate R1 from multicomponent relaxometry (captured with the mcDESPOT approach) as proxy metrics of myelin, the restricted volume fraction from the composite hindered and restricted model of diffusion as an estimate of axon morphology, and fractional anisotropy and radial diffusivity from diffusion tensor imaging. PCA was used for dimensionality reduction. Adaptive training was associated with benefits in a “WM capacity” component and increases in a microstructural component (increases in R1, restricted volume fraction, fractional anisotropy, and reduced radial diffusivity) that predominantly loaded on changes in the right dorsolateral superior longitudinal fasciculus and the left parahippocampal cingulum. In contrast, nonadaptive comparison activities were associated with the opposite pattern of reductions in WM capacity and microstructure. No group differences were observed for the myelin water fraction metric suggesting that R1 was a more sensitive “myelin” index. These results demonstrate task complexity and location-specific white matter microstructural changes that are consistent with tissue alterations underlying myelination in response to training.


2022 ◽  
Vol 15 ◽  
Author(s):  
Chase R. Figley ◽  
Md Nasir Uddin ◽  
Kaihim Wong ◽  
Jennifer Kornelsen ◽  
Josep Puig ◽  
...  

Fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) are commonly used as MRI biomarkers of white matter microstructure in diffusion MRI studies of neurodevelopment, brain aging, and neurologic injury/disease. Some of the more frequent practices include performing voxel-wise or region-based analyses of these measures to cross-sectionally compare individuals or groups, longitudinally assess individuals or groups, and/or correlate with demographic, behavioral or clinical variables. However, it is now widely recognized that the majority of cerebral white matter voxels contain multiple fiber populations with different trajectories, which renders these metrics highly sensitive to the relative volume fractions of the various fiber populations, the microstructural integrity of each constituent fiber population, and the interaction between these factors. Many diffusion imaging experts are aware of these limitations and now generally avoid using FA, AD or RD (at least in isolation) to draw strong reverse inferences about white matter microstructure, but based on the continued application and interpretation of these metrics in the broader biomedical/neuroscience literature, it appears that this has perhaps not yet become common knowledge among diffusion imaging end-users. Therefore, this paper will briefly discuss the complex biophysical underpinnings of these measures in the context of crossing fibers, provide some intuitive “thought experiments” to highlight how conventional interpretations can lead to incorrect conclusions, and suggest that future studies refrain from using (over-interpreting) FA, AD, and RD values as standalone biomarkers of cerebral white matter microstructure.


Author(s):  
Jolly Todd ◽  
Michie Pat ◽  
Fulham William ◽  
Cooper Patrick ◽  
Levi Christopher ◽  
...  

2018 ◽  
Vol 56 (6) ◽  
pp. 3999-4012 ◽  
Author(s):  
Sebastian Ocklenburg ◽  
Catrona Anderson ◽  
Wanda M. Gerding ◽  
Christoph Fraenz ◽  
Caroline Schlüter ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Tobias D. Faizy ◽  
Christian Thaler ◽  
Gabriel Broocks ◽  
Fabian Flottmann ◽  
Hannes Leischner ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Lauren M Ostrowski ◽  
Daniel Y Song ◽  
Emily L Thorn ◽  
Erin E Ross ◽  
Sally M Stoyell ◽  
...  

Abstract Benign epilepsy with centrotemporal spikes is a common childhood epilepsy syndrome that predominantly affects boys, characterized by self-limited focal seizures arising from the perirolandic cortex and fine motor abnormalities. Concurrent with the age-specific presentation of this syndrome, the brain undergoes a developmentally choreographed sequence of white matter microstructural changes, including maturation of association u-fibres abutting the cortex. These short fibres mediate local cortico-cortical communication and provide an age-sensitive structural substrate that could support a focal disease process. To test this hypothesis, we evaluated the microstructural properties of superficial white matter in regions corresponding to u-fibres underlying the perirolandic seizure onset zone in children with this epilepsy syndrome compared with healthy controls. To verify the spatial specificity of these features, we characterized global superficial and deep white matter properties. We further evaluated the characteristics of the perirolandic white matter in relation to performance on a fine motor task, gender and abnormalities observed on EEG. Children with benign epilepsy with centrotemporal spikes (n = 20) and healthy controls (n = 14) underwent multimodal testing with high-resolution MRI including diffusion tensor imaging sequences, sleep EEG recordings and fine motor assessment. We compared white matter microstructural characteristics (axial, radial and mean diffusivity, and fractional anisotropy) between groups in each region. We found distinct abnormalities corresponding to the perirolandic u-fibre region, with increased axial, radial and mean diffusivity and fractional anisotropy values in children with epilepsy (P = 0.039, P = 0.035, P = 0.042 and P = 0.017, respectively). Increased fractional anisotropy in this region, consistent with decreased integrity of crossing sensorimotor u-fibres, correlated with inferior fine motor performance (P = 0.029). There were gender-specific differences in white matter microstructure in the perirolandic region; males and females with epilepsy and healthy males had higher diffusion and fractional anisotropy values than healthy females (P ≤ 0.035 for all measures), suggesting that typical patterns of white matter development disproportionately predispose boys to this developmental epilepsy syndrome. Perirolandic white matter microstructure showed no relationship to epilepsy duration, duration seizure free, or epileptiform burden. There were no group differences in diffusivity or fractional anisotropy in superficial white matter outside of the perirolandic region. Children with epilepsy had increased radial diffusivity (P = 0.022) and decreased fractional anisotropy (P = 0.027) in deep white matter, consistent with a global delay in white matter maturation. These data provide evidence that atypical maturation of white matter microstructure is a basic feature in benign epilepsy with centrotemporal spikes and may contribute to the epilepsy, male predisposition and clinical comorbidities observed in this disorder.


Sign in / Sign up

Export Citation Format

Share Document