Social Decisions from Description Compared to Experience Rely on Different Cognitive and Neural Processes

Author(s):  
Anna Deréky ◽  
Todd Anthony Hare ◽  
Daniella Laureiro-Martínez ◽  
Stefano Brusoni

Abstract Social decisions reveal the degree to which people consider societal needs relative to their own desires. Although many studies showed how social decisions are taken when the consequences of actions are given as explicit information, little is known about how social choices are made when the relevant information was learned through repeated experience. Here, we compared how these two different ways of learning about the value of alternatives (description versus experience) impact social decisions in 147 healthy young adult humans. Using diffusion decision models, we show that, although participants chose similar outcomes across the learning conditions, they sampled and processed information differently. During description decisions, information sampling depended on both chosen and foregone rewards for self and society, while during experience decisions sampling was proportional to chosen outcomes only. Our behavioral data indicate that description choices involved the active processing of more information. Additionally, neuroimaging data from 40 participants showed that the brain activity was more closely associated with the information sampling process during description relative to experience decisions. Overall, our work indicates that the cognitive and neural mechanisms of social decision making depend strongly on how the values of alternatives were learned in addition to individual social preferences.

2015 ◽  
Vol 112 (52) ◽  
pp. 16012-16017 ◽  
Author(s):  
Steve W. C. Chang ◽  
Nicholas A. Fagan ◽  
Koji Toda ◽  
Amanda V. Utevsky ◽  
John M. Pearson ◽  
...  

Social decisions require evaluation of costs and benefits to oneself and others. Long associated with emotion and vigilance, the amygdala has recently been implicated in both decision-making and social behavior. The amygdala signals reward and punishment, as well as facial expressions and the gaze of others. Amygdala damage impairs social interactions, and the social neuropeptide oxytocin (OT) influences human social decisions, in part, by altering amygdala function. Here we show in monkeys playing a modified dictator game, in which one individual can donate or withhold rewards from another, that basolateral amygdala (BLA) neurons signaled social preferences both across trials and across days. BLA neurons mirrored the value of rewards delivered to self and others when monkeys were free to choose but not when the computer made choices for them. We also found that focal infusion of OT unilaterally into BLA weakly but significantly increased both the frequency of prosocial decisions and attention to recipients for context-specific prosocial decisions, endorsing the hypothesis that OT regulates social behavior, in part, via amygdala neuromodulation. Our findings demonstrate both neurophysiological and neuroendocrinological connections between primate amygdala and social decisions.


2020 ◽  
Author(s):  
Shinsuke Suzuki ◽  
John O'Doherty

Most of our waking time as human beings is spent interacting with other individuals. In order to make good decisions in this social milieu, it is often necessary to make inferences about the internal states, traits and intentions of others. Recently, some progress has been made to uncover the neural computations underlying human social decision-making by combining functional magnetic resonance neuroimaging (fMRI) with computational modeling of behavior. Modeling of behavioral data allows us to identify key computations necessary for decision-making and how these computations are integrated. Furthermore, by correlating these computational variables against neuroimaging data, it has become possible to elucidate where in the brain various computational variables are implemented during social decision making. Here we review the current state of knowledge in the domain of social computational neuroscience. Findings to date have emphasized that social decisions are driven by multiple computations that are conducted in parallel and which are implemented in distinct brain regions. We suggest that further progress is going to depend on identifying how and where such variables get integrated in order to yield a coherent behavioral output.


2019 ◽  
Vol 30 (4) ◽  
pp. 243-249
Author(s):  
Ronja Weiblen ◽  
Melanie Jonas ◽  
Sören Krach ◽  
Ulrike M. Krämer

Abstract. Research on the neural mechanisms underlying Gilles de la Tourette syndrome (GTS) has mostly concentrated on abnormalities in basal ganglia circuits. Recent alternative accounts, however, focused more on social and affective aspects. Individuals with GTS show peculiarities in their social and affective domain, including echophenomena, coprolalia, and nonobscene socially inappropriate behavior. This article reviews the experimental and theoretical work done on the social symptoms of GTS. We discuss the role of different social cognitive and affective functions and associated brain networks, namely, the social-decision-making system, theory-of-mind functions, and the so-called “mirror-neuron” system. Although GTS affects social interactions in many ways, and although the syndrome includes aberrant social behavior, the underlying cognitive, affective, and neural processes remain to be investigated.


2013 ◽  
Vol 25 (6) ◽  
pp. 834-842 ◽  
Author(s):  
Joseph M. Moran ◽  
Jamil Zaki

Functional imaging has become a primary tool in the study of human psychology but is not without its detractors. Although cognitive neuroscientists have made great strides in understanding the neural instantiation of countless cognitive processes, commentators have sometimes argued that functional imaging provides little or no utility for psychologists. And indeed, myriad studies over the last quarter century have employed the technique of brain mapping—identifying the neural correlates of various psychological phenomena—in ways that bear minimally on psychological theory. How can brain mapping be made more relevant to behavioral scientists broadly? Here, we describe three trends that increase precisely this relevance: (i) the use of neuroimaging data to adjudicate between competing psychological theories through forward inference, (ii) isolating neural markers of information processing steps to better understand complex tasks and psychological phenomena through probabilistic reverse inference, and (iii) using brain activity to predict subsequent behavior. Critically, these new approaches build on the extensive tradition of brain mapping, suggesting that efforts in this area—although not initially maximally relevant to psychology—can indeed be used in ways that constrain and advance psychological theory.


2019 ◽  
Author(s):  
Berry van den Berg ◽  
Marlon de Jong ◽  
Marty G. Woldorff ◽  
Monicque M. Lorist

AbstractBoth the intake of caffeine-containing substances and the prospect of reward for performing a cognitive task have been associated with improved behavioral performance. To investigate the possible common and interactive influences of caffeine and reward-prospect on preparatory attention, we tested 24 participants during a 2-session experiment in which they performed a cued-reward color-word Stroop task. On each trial, participants were presented with a cue to inform them whether they had to prepare for presentation of a Stroop stimulus and whether they could receive a reward if they performed well on that trial. Prior to each session, participants received either coffee with caffeine (3 mg/kg bodyweight) or with placebo (3 mg/kg bodyweight lactose). In addition to behavioral measures, electroencephalography (EEG) measures of electrical brain activity were recorded. Results showed that both the intake of caffeine and the prospect of reward improved speed and accuracy, with the effects of caffeine and reward-prospect being additive on performance. Neurally, reward-prospect resulted in an enlarged contingent negative variation (CNV) and reduced posterior alpha power (indicating increased cortical activity), both hallmark neural markers for preparatory attention. Moreover, the CNV enhancement for reward-prospect trials was considerably more pronounced in the caffeine condition as compared to the placebo condition. These results thus suggest that caffeine intake boosts preparatory attention for task-relevant information, especially when performance on that task can lead to reward.


2004 ◽  
Vol 359 (1451) ◽  
pp. 1737-1748 ◽  
Author(s):  
S. Zeki ◽  
O. R. Goodenough ◽  
Paul J. Zak

This paper introduces an emerging transdisciplinary field known as neuroeconomics. Neuroeconomics uses neuroscientific measurement techniques to investigate how decisions are made. First, I present a basic overview of neuroanatomy and explain how brain activity is measured. I then survey findings from the neuroeconomics literature on acquiring rewards and avoiding losses, learning, choice under risk and ambiguity, delay of gratification, the role of emotions in decision-making, strategic decisions and social decisions. I conclude by identifying new directions that neuroeconomics is taking, including applications to public policy and law.


2018 ◽  
Vol 2 ◽  
pp. 239821281775272 ◽  
Author(s):  
Nitin Williams ◽  
Richard N. Henson

Functional magnetic resonance imaging and electro-/magneto-encephalography are some of the main neuroimaging technologies used by cognitive neuroscientists to study how the brain works. However, the methods for analysing the rich spatial and temporal data they provide are constantly evolving, and these new methods in turn allow new scientific questions to be asked about the brain. In this brief review, we highlight a handful of recent analysis developments that promise to further advance our knowledge about the working of the brain. These include (1) multivariate approaches to decoding the content of brain activity, (2) time-varying approaches to characterising states of brain connectivity, (3) neurobiological modelling of neuroimaging data, and (4) standardisation and big data initiatives.


2019 ◽  
Vol 14 (11) ◽  
pp. 1159-1166 ◽  
Author(s):  
Poornima Kumar ◽  
Angela Pisoni ◽  
Erin Bondy ◽  
Rebecca Kremens ◽  
Paris Singleton ◽  
...  

Abstract Adolescents strive for peer approval, and an increased sensitivity to peers’ opinions is normative. However, among vulnerable adolescents, peer evaluation can be detrimental, contributing to affective disorders. It is, therefore, critical to improve our understanding of neural underpinnings of peer evaluation. Prior research has investigated averaged neural responses to peer acceptance or rejection, neglecting to probe trial-by-trial computations that mirror real-time updating of daily activities. In non-social decision-making, a common neural valuation system centered on the medial prefrontal cortex (mPFC) has emerged, which evaluates different reward types on a common scale to guide choices. However, it is unclear whether the mPFC also tracks complex social scenarios involving peer feedback. To address this gap, we acquired fMRI data from 55 healthy adolescents during the Chatroom Task, which probes peer evaluation, and implemented a computational approach to characterize trial-by-trial social value, thereby allowing us to interrogate the neural correlates of social value. Consistent with our hypothesis, social value signals were encoded in the mPFC. Interestingly, analyses also revealed a wider social-specific valuation network including the precuneus and amygdala. Understanding how adolescents make social decisions and neural markers associated with it, may, ultimately, help us clarify promising targets for intervention.


2020 ◽  
Vol 45 (9) ◽  
pp. 855-864
Author(s):  
Elisa Dal Bò ◽  
Claudio Gentili ◽  
Cinzia Cecchetto

Abstract Across phyla, chemosignals are a widely used form of social communication and increasing evidence suggests that chemosensory communication is present also in humans. Chemosignals can transfer, via body odors, socially relevant information, such as specific information about identity or emotional states. However, findings on neural correlates of processing of body odors are divergent. The aims of this meta-analysis were to assess the brain areas involved in the perception of body odors (both neutral and emotional) and the specific activation patterns for the perception of neutral body odor (NBO) and emotional body odor (EBO). We conducted an activation likelihood estimation (ALE) meta-analysis on 16 experiments (13 studies) examining brain activity during body odors processing. We found that the contrast EBO versus NBO resulted in significant convergence in the right middle frontal gyrus and the left cerebellum, whereas the pooled meta-analysis combining all the studies of human odors showed significant convergence in the right inferior frontal gyrus. No significant cluster was found for NBOs. However, our findings also highlight methodological heterogeneity across the existing literature. Further neuroimaging studies are needed to clarify and support the existing findings on neural correlates of processing of body odors.


Sign in / Sign up

Export Citation Format

Share Document