scholarly journals Closed-formed solutions of geometric albedos and phase curves of exoplanets for any reflection law

Author(s):  
Kevin Heng ◽  
Daniel Kitzmann

Abstract The albedo of a celestial body is the frac-tion of light reflected by it. Studying the albe-dos of the planets and moons of the Solar Sys-tem dates back at least a century [1, 2, 3, 4, 5]. Of particular interest is the relationship between the albedo measured at superior conjunction (full phase), known as the “geometric albedo”, and the albedo considered over all phase angles, known as the “spherical albedo” [2, 6, 7]. Modern astronom-ical facilities enable the measurement of geomet-ric albedos from visible/optical secondary eclipses [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and the inference of the Bond albedo (spherical albedo measured over all wavelengths) from in-frared phase curves [21, 22, 23, 24, 25] of transit-ing exoplanets. Determining the relationship be-tween the geometric and spherical or Bond albe-dos usually involves complex numerical calculations [26, 27, 28, 29, 30, 31, 32] and closed-form solu-tions are restricted to simple reflection laws [33, 34]. Here we report the discovery of closed-form solu-tions for the geometric albedo and integral phase function that apply to any law of reflection. The integral phase function is used to obtain the phase integral, which is the ratio of the spherical to the geometric albedos. The generality of the solu-tions stems from a judicious choice of the coor-dinate system in which to perform different parts of the derivation. The closed-formed solutions have profound implications for interpreting obser-vations. The shape of a reflected light phase curve and the secondary eclipse depth may now be self-consistently inverted to retrieve fundamental phys-ical parameters (single-scattering albedo, scatter-ing asymmetry factor, cloud cover). Fully-Bayesian phase curve inversions for reflectance maps and si-multaneous light curve detrending may now be per-formed, without the need for binning in time, due to the efficiency of computation. We demonstrate these innovations for the hot Jupiter Kepler-7b, inferring a revised geometric albedo of 0.12 ± 0.02, a Bond albedo of 0.18 ± 0.03 and a phase integral of 1.5 ± 0.1, which is consistent with isotropic scatter-ing. The scattering asymmetry factor is 0.04±0.15, implying that the aerosols are small compared to the wavelengths probed by the Kepler space tele-scope. In the near future, one may use the closed-form solutions discovered here to extract funda-mental parameters, across wavelength, from multi-wavelength phase curves of both gas-giant and ter-restrial exoplanets measured by the James Webb Space Telescope.

2012 ◽  
Vol 10 (H16) ◽  
pp. 179-179 ◽  
Author(s):  
Jian-Yang Li ◽  
L. Jorda ◽  
H. U. Keller ◽  
N. Mastrodemos ◽  
S. Mottola ◽  
...  

AbstractThe Dawn spacecraft orbited Asteroid (4) Vesta for a year, and returned disk-resolved images and spectra covering visible and near-infrared wavelengths at scales as high as 20 m/pix. The visible geometric albedo of Vesta is ~ 0.36. The disk-integrated phase function of Vesta in the visible wavelengths derived from Dawn approach data, previous ground-based observations, and Rosetta OSIRIS observations is consistent with an IAU H-G phase law with H=3.2 mag and G=0.28. Hapke's modeling yields a disk-averaged single-scattering albedo of 0.50, an asymmetry factor of -0.25, and a roughness parameter of ~20 deg at 700 nm wavelength. Vesta's surface displays the largest albedo variations observed so far on asteroids, ranging from ~0.10 to ~0.76 in geometric albedo in the visible wavelengths. The phase function of Vesta displays obvious systematic variations with respect to wavelength, with steeper slopes within the 1- and 2-micron pyroxene bands, consistent with previous ground-based observations and laboratory measurement of HED meteorites showing deeper bands at higher phase angles. The relatively high albedo of Vesta suggests significant contribution of multiple scattering. The non-linear effect of multiple scattering and the possible systematic variations of phase function with albedo across the surface of Vesta may invalidate the traditional algorithm of applying photometric correction on airless planetary surfaces.


Author(s):  
Raffaele Barretta ◽  
Francesco Fabbrocino ◽  
Raimondo Luciano ◽  
Francesco Marotti de Sciarra

2010 ◽  
Vol E93-B (12) ◽  
pp. 3461-3468 ◽  
Author(s):  
Bing LUO ◽  
Qimei CUI ◽  
Hui WANG ◽  
Xiaofeng TAO ◽  
Ping ZHANG

Sign in / Sign up

Export Citation Format

Share Document