A Novel Parametric Model for Nonlinear Hysteretic Behaviors with Strain Stiffening of Magnetorheological Gel Based on Fruit Fly Optimization Algorithm
Abstract Magnetorheological (MR) gel is a new branch of MR materials, which can overcome the phenomenon of particle agglomeration existing in MR fluid, thus improving the controllability of materials in engineering applications. In this paper, a novel parametric model for tracking the nonlinear hysteretic behaviors with strain stiffening of MR gel is constructed. The measure data in relative to the five current levels of 0A, 0.2A, 0.5A, 0.8A and 1A under the strain amplitude and frequency of 10% and 0.1Hz respectively are utilized to identify the parameters. The optimal solution for the model parameters is conduced employing the fruit fly optimization algorithm (FOA). The comparison study with two typical model such as Bouc-Wen model and viscoelastic-plastic model is conduced to to evaluate the effectiveness of the developed model. The model parameters are generalized with respect to the loading current, and the reliability of the generalized model is verified. The studies show that the proposed model can perfectly fit the strain stiffening and nonlinearity of sample, which can provide a theoretical basis for the semi-active control of MR gel in practical engineering applications.