Evaluation of the mechanical anisotropy of lacustrine smectite clays by triaxial test analysis
Abstract This paper describes the role of fabric anisotropy during clayey soil deformation. A set of triaxial tests was performed on vertical and horizontal specimens of undisturbed smectite lake sediments from Jurica, Queretaro in Mexico. The results allowed to analyze the influence of bedding and discontinuities on the mechanical behavior of Jurica clays after failure. Tests with applied low strain rates allowed pore pressure equalization within specimens with different gravimetric water content and degree of saturation. Shear failure results of undrained tests showed that deformation distributes differently in both horizontal and vertical directions and that stress may be dissipated by pore collapses, fractures and particle deformation. The experimental evidence suggests that microfabric is a relevant variable in the overall mechanical response of clayey sediments that depends on the natural fabric (bedding and discontinuities), mineralogy, and water content. A detailed analysis of Young´s Moduli (E) showed the high variability of this parameter from 108 to 409 kg/cm2 (calculated at 30% of σdmax) and its dependence on the orientation of the specimen and the water content. In addition, p’-q’ graphs illustrate the relevance of considering mechanical anisotropy in clays and provide further insights to understand the role of smectites in progressive shear deformation.