scholarly journals Upregulated Ribosomal Pathway Impairs Follicle Development in a Polycystic Ovary Syndrome Mouse Model: Findings of Differential Gene Expression Analysis of Oocytes

Author(s):  
Natsuki Nakanishi ◽  
Satoko Osuka ◽  
Tomohiro Kono ◽  
Hisato Kobayashi ◽  
Shinya Ikeda ◽  
...  

Abstract Background: Polycystic ovary syndrome (PCOS), a common endocrinal disorder, is associated with impaired oocyte development, which leads to infertility. However, the pathogenesis of PCOS has not been completely elucidated. Limited studies have analyzed the pathological characteristics of oocytes in PCOS. This study aimed to analyze the differentially expressed genes (DEGs) and epigenetic changes in the oocytes of the PCOS mouse model to identify the etiological factors.Methods: C57BL/6J female mice were subcutaneously injected with vehicle or 5α-dihydrotestosterone (250 µg/day) on days 16–18 of pregnancy. Female offspring were used as the control or PCOS group. The oocytes were collected from mice aged 7–9 weeks. The DEGs between the control and PCOS groups were analyzed using RNA sequencing (RNA-Seq). Additionally, the DNA methylation status was analyzed using the post-bisulfite adaptor tagging method. The ovarian tissue sections were stained with hematoxylin and eosin to examine the morphological changes. The proteins, Rps21 and Rpl36, were measured using immunostaining.Results: Compared with the control group, the PCOS group exhibited impaired estrous cycle and polycystic ovary-like morphology. RNA-Seq analysis revealed that 90 DEGs were upregulated and 27 DEGs were downregulated in the PCOS mouse model. DNA methylation analysis revealed 30 hypomethylated and 10 hypermethylated regions in the PCOS group. However, the DNA methylation status was not correlated with differential gene expression. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that five DEGs (Rps21, Rpl36, Rpl36a, Rpl37a, and Rpl22l1) were enriched in ribosome-related pathways. The immunohistochemical analysis revealed that the expression levels of Rps21 and Rpl36 were significantly upregulated in the PCOS mouse model.Conclusions: These results suggest that differential gene expression in the oocytes of the PCOS mouse model is related to impaired folliculogenesis. These findings improved our understanding of the pathogenesis of PCOS.

2022 ◽  
Author(s):  
Natsuki Nakanishi ◽  
Satoko Osuka ◽  
Tomohiro Kono ◽  
Hisato Kobayashi ◽  
Shinya Ikeda ◽  
...  

Abstract Polycystic ovary syndrome (PCOS), a common endocrinal disorder, is associated with impaired oocyte development, which leads to infertility. However, the pathogenesis of PCOS has not been completely elucidated. This study aimed to analyze the differentially expressed genes (DEGs) and epigenetic changes in the oocytes of the PCOS mouse model to identify the etiological factors. In this study, RNA-sequencing analysis revealed that 90 DEGs were upregulated and 27 DEGs were downregulated in the PCOS mouse model. DNA methylation analysis revealed 30 hypomethylated and 10 hypermethylated regions in the PCOS group. However, the DNA methylation status was not correlated with differential gene expression. The pathway enrichment analysis revealed that five DEGs (Rps21, Rpl36, Rpl36a, Rpl37a, and Rpl22l1) were enriched in ribosome-related pathways in the oocytes of the PCOS mouse model, and the immunohistochemical analysis revealed significantly upregulated expression levels of Rps21 and Rpl36. These results suggest that differential gene expression in the oocytes of the PCOS mouse model is related to impaired folliculogenesis. These findings improved our understanding of the pathogenesis of PCOS.


2019 ◽  
Vol 34 (9) ◽  
pp. 1640-1649 ◽  
Author(s):  
M D Saenz-de-Juano ◽  
E Ivanova ◽  
S Romero ◽  
F Lolicato ◽  
F Sánchez ◽  
...  

Abstract STUDY QUESTION Does imprinted DNA methylation or imprinted gene expression differ between human blastocysts from conventional ovarian stimulation (COS) and an optimized two-step IVM method (CAPA-IVM) in age-matched polycystic ovary syndrome (PCOS) patients? SUMMARY ANSWER No significant differences in imprinted DNA methylation and gene expression were detected between COS and CAPA-IVM blastocysts. WHAT IS KNOWN ALREADY Animal models have revealed alterations in DNA methylation maintenance at imprinted germline differentially methylated regions (gDMRs) after use of ARTs. This effect increases as more ART interventions are applied to oocytes or embryos. IVM is a minimal-stimulation ART with reduced hormone-related side effects and risks for patients. CAPA-IVM is an improved IVM system that includes a pre-maturation step (CAPA), followed by an IVM step, both in the presence of physiological compounds that promote oocyte developmental capacity. STUDY DESIGN, SIZE, DURATION For DNA methylation analysis 20 CAPA-IVM blastocysts were compared to 12 COS blastocysts. For RNA-Seq analysis a separate set of 15 CAPA-IVM blastocysts were compared to 5 COS blastocysts. PARTICIPANTS/MATERIALS, SETTING, METHODS COS embryos originated from 12 patients with PCOS (according to Rotterdam criteria) who underwent conventional ovarian stimulation. For CAPA-IVM 23 women were treated for 3–5 days with highly purified hMG (HP-hMG) and no hCG trigger was given before oocyte retrieval. Oocytes were first cultured in pre-maturation medium (CAPA for 24 h containing C-type natriuretic peptide), followed by an IVM step (30 h) in medium containing FSH and Amphiregulin. After ICSI, Day 5 or 6 embryos in both groups were vitrified and used for post-bisulphite adaptor tagging (PBAT) DNA methylation analysis or RNA-seq gene expression analysis of individual embryos. Data from specific genes and gDMRs were extracted from the PABT and RNA-seq datasets. MAIN RESULTS AND THE ROLE OF CHANCE CAPA-IVM blastocysts showed similar rates of methylation and gene expression at gDMRs compared to COS embryos. In addition, expression of major epigenetic regulators was similar between the groups. LIMITATIONS, REASONS FOR CAUTION The embryos from the COS group were generated in a range of culture media. The CAPA-IVM embryos were all generated using the same sperm donor. The DNA methylation level of gDMRs in purely in vivo-derived human blastocysts is not known. WIDER IMPLICATIONS OF THE FINDINGS A follow-up of children born after CAPA-IVM is important as it is for other new ARTs, which are generally introduced into clinical practice without prior epigenetic safety studies on human blastocysts. CAPA-IVM opens new perspectives for patient-friendly ART in PCOS STUDY FUNDING/COMPETING INTEREST(S) IVM research at the Vrije Universiteit Brussel has been supported by grants from the Institute for the Promotion of Innovation by Science and Technology in Flanders (Agentschap voor Innovatie door Wetenschap en Technologie-IWT, project 110680), the Fund for Research Flanders (Fonds voor Wetenschappelijk Onderzoek-Vlaanderen-FWO-AL 679 project, project G.0343.13), the Belgian Foundation Against Cancer (HOPE project, Dossier C69Ref Nr 2016-119) and the Vrije Universiteit Brussel (IOF Project 4R-ART Nr 2042). Work in G.K.’s laboratory is supported by the UK Biotechnology and Biological Sciences Research Council and Medical Research Council. The authors have no conflicts of interest.


2019 ◽  
Vol 12 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Jun-Young Shin ◽  
Sang-Heon Choi ◽  
Da-Woon Choi ◽  
Ye-Jin An ◽  
Jae-Hyuk Seo ◽  
...  

2021 ◽  
Author(s):  
Carlos A. M. Cardoso-Junior ◽  
Boris Yagound ◽  
Isobel Ronai ◽  
Emily J. Remnant ◽  
Klaus Hartfelder ◽  
...  

AbstractIntragenic DNA methylation, also called gene body methylation, is an evolutionarily-conserved epigenetic mechanism in animals and plants. In social insects, gene body methylation is thought to contribute to behavioral plasticity, for example between foragers and nurse workers, by modulating gene expression. However, recent studies have suggested that the majority of DNA methylation is sequence-specific, and therefore cannot act as a flexible mediator between environmental cues and gene expression. To address this paradox, we examined whole-genome methylation patterns in the brains and ovaries of young honey bee workers that had been subjected to divergent social contexts: the presence or absence of the queen. Although these social contexts are known to bring about extreme changes in behavioral and reproductive traits through differential gene expression, we found no significant differences between the methylomes of workers from queenright and queenless colonies. In contrast, thousands of regions were differentially methylated between colonies, and these differences were not associated with differential gene expression in a subset of genes examined. Methylation patterns were highly similar between brain and ovary tissues and only differed in nine regions. These results strongly indicate that DNA methylation is not a driver of differential gene expression between tissues or behavioral morphs. Finally, despite the lack of difference in methylation patterns, queen presence affected the expression of all four DNA methyltransferase genes, suggesting that these enzymes have roles beyond DNA methylation. Therefore, the functional role of DNA methylation in social insect genomes remains an open question.


2015 ◽  
Vol 9 (3) ◽  
pp. 259-267 ◽  
Author(s):  
Gi Won Kim ◽  
Ji Young Hong ◽  
So-Yeon Yu ◽  
Jeong Jin Ahn ◽  
Youngjoo Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document