scholarly journals A New Prognostic and Therapeutic Immune-related Risk Signature of Colorectal Cancer

Author(s):  
Yuan Li ◽  
Hao Huang ◽  
Jun Feng ◽  
Yulan Zhu ◽  
Tianwei Jiang ◽  
...  

Abstract BackgroundAlthough some advanced colorectal cancer (CRC) patients could select immunotherapy, but still most microsatellite stability (MSS) CRC patients did not respond. Our present study aims to set up a novel system for prognostic prediction and immunotherapeutic responsiveness for MSS CRC patients.MethodsUnivariable Cox regression survival analysis and least absolute shrinkage and selector operation (LASSO) regression analysis were performed to identify prognostic genes and establish immune risk signatures. Multivariate Cox regression analysis was performed to verify whether these clinical features could predict prognosis. R package was used to analyze the relationship between the immune-related risk model and these immune cells, effector molecules, and immune checkpoints.ResultsWe constructed an immune-related signature and verified its predictive capability. Immune-related signature included 12 differentially expressed IRGs (12 DE IR MSSGs), including CXCL1, CD36, FABP4, MS4A2, NRG1, VGF, GRP, HDC, XCL1, NGF, MAGEA1, and IL13. The signature consisting of 12 DE IR MSSGs was an independent and effective prognostic factor for the overall survival of CRC patients. In addition, the signature consisting of 12 DE IR MSSGs reflected the infiltration characteristics of different immunocytes in tumor immune microenvironment. The signature consisting of 12 DE IR MSSGs also had a significant correlation with immune checkpoint molecules.

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yuhua Chen ◽  
Jinjie Wang ◽  
Hao Zhou ◽  
Zhanghao Huang ◽  
Li Qian ◽  
...  

Background. DNA methylation is an important part of epigenetic modification, and its abnormality is closely related to esophageal adenocarcinoma (EAC). This study was aimed at using bioinformatics analysis to identify methylation-driven genes (MDGs) in EAC patients and establish a risk model as a biological indicator of EAC prognosis. Method. Downloaded EAC DNA methylation, transcriptome, and related clinical data from TCGA database. MethylMix was used to identify MDGs. R package clusterProfiler and the ConsensusPathDB online database were used to analyze the rich functions and pathways of these MDGs. The prognostic risk model was established by univariate Cox regression, Lasso regression, and multivariate Cox regression analysis. Finally each MDG in the model were carried out through the survival R package. Results. A total of 273 MDGs were identified, which were enriched in transcriptional regulation and embryonic organ morphogenesis. Cox regression analysis established a risk model consisting of GPBAR1, OLFM4, FOXI2, and CASP10. In addition, further survival analysis revealed that OLFM4 and its two related sites were significantly related to the EAC patients’ survival. Conclusion. In summary, this study used bioinformatics methods to identify EAC MDGs and established a reliable risk prognosis model. It provided potential biomarkers for the early treatment and prognosis evaluation of EAC.


2021 ◽  
Author(s):  
Cheng Yan ◽  
Qingling Liu ◽  
Ruoling Jia

Abstract Background: Autophagy plays an important role in triple negative breast cancer (TNBC). However, the prognostic value of autophagy-related genes (ARGs) in TNBC remains unknown. In this study, we established a survival model to evaluate the prognosis of TNBC patients using ARGs signature.Methods: A total of 222 autophagy-related genes were downloaded from The Human Autophagy Database. The RNA-sequencing data and corresponding clinical data of TNBC were obtained from the TCGA database. Differential gene expression of ARGs (DE-ARGs) between normal samples and TNBC samples was determined by the EdgeR software package. Then, univariate Cox, Lasso, and multivariate Cox regression analyses were performed. According to the Lasso regression results based on univariate Cox, we identified a prognostic signature for overall-survival (OS), which was further validated by using GEO cohort. We also found an independent prognostic marker that can predict the clinicopathological features of TNBC. Furthermore, a nomogram was drawn to predict the survival probability of TNBC patients, which could help in clinical decision for TNBC treatment. Finally, we validated the requirement of a ARG in our model for TNBC cell survival and metastasis.Results: There are 43 differentially expressed ARGs (DE-ARGs) were identified between normal and tumor samples. A risk model for OS using CDKN1A, CTSD, CTSL, EIF4EBP1, TMEM74 and VAMP3 by Lasso regression analysis was established based on univariate Cox regression analysis. Overall survival of TNBC patients was significantly shorter in the high-risk group than in the low-risk group for both the training and validation cohorts. Using the Kaplan-Meier curves and ROC curves, we demonstrated the accuracy of the prognostic model. Multivariate Cox regression analysis was used to verify risk score as independent predictor. Then a nomogram was proposed to predict 1-, 3-, and 5-year survival for TNBC patients. The calibration curves showed great accuracy of the model for survival prediction. Finally, we found that depletion of EIF4EBP1, one of ARGs in our model, significantly reduced cell proliferation and metastasis of TNBC cells. Conclusion: An autophagy-related prognosis model in TNBCs was constructed using ARGs signature containing CDKN1A, CTSD, CTSL, EIF4EBP1, TMEM74 and VAMP3. It could serve as an independent prognostic biomarker in TNBC.


2021 ◽  
Author(s):  
Xin-Yu Li ◽  
Lei Hou ◽  
Lu-yu Zhang ◽  
Xue-yuan Li ◽  
xi-tao Yang

Abstract Aim: A glioblastoma (GBM) prognostic model was developed with GBM -related alternative splicing (AS) data and prognostic markers were identified. Methods: AS data and clinical data of GBM patients were retrieved from The Cancer Genome Atlas (TCGA) SpliceSeq database and TCGA database, respectively. The data from these two databases were intersected to screen the prognosis-associated AS events, which was subsequently examined in Univariate Cox regression models. To avoid model overfitting, LASSO regression analysis was conducted. On the basis of these AS events, we established a prognostic model of GBM with the use of multivariate Cox regression analysis. On the strength of this model, the patients were assigned into high-risk and low-risk groups with a median risk score as the threshold. Kaplan-Meier survival, receiver operating characteristic (ROC), and calibration curves were applied to evaluate the performance of this model. Finally, combined with the risk model and clinicopathological characteristics, Cox regression analysis was utilized to identify the independent prognostic markers of GBM, and a nomogram was constructed. Results: The AS and clinical data of 169 GBM patients from the TCGA SpliceSeq and TCGA databases were collected. Univariate Cox regression analysis identified 1000 prognosis-related AS events in GBM, and then Lasso regression analysis identified 16 AS events. A GBM prognostic risk model was constructed based on AS events of 7 genes (FAM86B1, ZNF302, C19orf57, RPL39L, CBLL1, RWDD1, IGF2BP2). Through this model, we found lower overall survival (OS) rates of the high-risk population versus the low-risk population (p < 0.05). ROC and calibration curve analyses demonstrated the good ability of this model to predict the OS of GBM patients. Cox regression analysis suggested risk score as an independent prognostic factor for GBM. We also found that IGF2BP2 is associated with patient prognosis and have a strong relationship with immunotherapy response. Conclusion: The prognostic model based on AS events can significantly distinguish the survival rate of high-risk and low-risk GBM patients and IGF2BP2 were identified as a novel prognostic biomarker and immunotherapeutic target.


2020 ◽  
Vol 19 ◽  
pp. 153303382098417
Author(s):  
Ting-ting Liu ◽  
Shu-min Liu

Objective: The incidence of colorectal cancer is increasing every year, and autophagy may be related closely to the pathogenesis of colorectal cancer. Autophagy is a natural catabolic mechanism that allows the degradation of cellular components in eukaryotic cells. However, autophagy plays a dual role in tumorigenesis. It not only promotes normal cell survival and tumor growth but also induces cell death and suppresses tumors survival. In addition, the pathogenesis of various conditions, including inflammation, neurodegenerative diseases, or tumors, is associated with abnormal autophagy. The present work aimed to examine the significance of autophagy-related genes (ARGs) in prognosis prediction, to construct an autophagy prognostic model, and to identify independent prognostic factors for colorectal cancer (CRC). Methods: This study discovered a total of 36 ARGs in CRC cases using The Cancer Genome Atlas (TCGA) and Human Autophagy-dedicated (HADd) databases along with functional enrichment analysis. Then, an autophagy prognostic model was constructed using univariate Cox regression analysis, and the key prognostic genes were screened. Finally, independent prognostic markers were determined through independent prognostic analysis and clinical correlation analysis of key genes. Results: Of the 36 differentially expressed ARGs, 13 were related to prognosis, as determined by univariate Cox regression analysis. A total of 6 key genes were obtained by a multivariate Cox regression analysis. Independent prognostic values were shown by 3 genes, namely, microtubule-associated protein 1 light chain 3 (MAP1LC3C), small GTPase superfamily and Rab family (RAB7A), and WD-repeat domain phosphoinositide-interacting protein 2 (WIPI2) by independent prognostic analysis and clinical correlation. Conclusions: In this study, molecular bioinformatics technology was employed to determine and construct a prognostic model of autophagy for colon cancer patients, which revealed 3 autophagy-related features, namely, MAP1LC3C, WIPI2, and RAB7A.


2021 ◽  
Author(s):  
Jianxing Ma ◽  
Chen Wang

Abstract This study is to establish NMF (nonnegative matrix factorization) typing related to the tumor microenvironment (TME) of colorectal cancer (CRC) and to construct a gene model related to prognosis to be able to more accurately estimate the prognosis of CRC patients. NMF algorithm was used to classify samples merged clinical data of differentially expressed genes (DEGs) of TCGA that are related to the TME shared in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, and survival differences between subtype groups were compared. By using createData Partition command, TCGA database samples were randomly divided into train group and test group. Then the univariate Cox analysis, Lasso regression and multivariate Cox regression models were used to obtain risk model formula, which is used to score the samples in the train group, test group and GEO database, and to divide the samples of each group into high-risk and low-risk groups, according to the median score of the train group. After that, the model was validated. Patients with CRC were divided into 2, 3, 5 subtypes respectively. The comparison of patients with overall survival (OS) and progression-free survival (PFS) showed that the method of typing with the rank set to 5 was the most statistically significant (p=0.007, p<0.001, respectively). Moreover, the model constructed containing 14 immune-related genes (PPARGC1A, CXCL11, PCOLCE2, GABRD, TRAF5, FOXD1, NXPH4, ALPK3, KCNJ11, NPR1, F2RL2, CD36, CCNF, DUSP14) can be used as an independent prognostic factor, which is superior to some previous models in terms of patient prognosis. The 5-type typing of CRC patients and the 14 immune-related genes model constructed by us can accurately estimate the prognosis of patients with CRC.


2021 ◽  
Author(s):  
Rui Feng ◽  
Jian Li ◽  
Weiling Xuan ◽  
Hanbo Liu ◽  
Dexin Cheng ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer and the main cause of cancer mortality. Its high complexity and dismal prognosis bring dramatic difficulty to treatment. Due to the disclosed dual functions of autophagy in cancer development, understanding autophagy-related genes devotes into seeking novel biomarkers for HCC. Methods Differential expression of genes in normal and tumor groups was analyzed to acquire autophagy-related genes in HCC. GO and KEGG pathway analyses were conducted on these genes. Genes were then screened by univariate regression analysis. The screened genes were subjected to multivariate Cox regression analysis to build a prognostic model. The model was validated by ICGC validation set. Results Altogether, 42 autophagy-related differential genes were screened by differential expression analysis. Enrichment analysis showed that they were mainly enriched in pathways including regulation of autophagy and cell apoptosis. Genes were screened by univariate analysis and multivariate Cox regression analysis to build a prognostic model. The model was constituted by 6 feature genes: EIF2S1, BIRC5, SQSTM1, ATG7, HDAC1, FKBP1A. Validation confirmed the accuracy and independence of this model in predicting HCC patient’s prognosis. Conclusion A total of 6 feature genes were identified to build a prognostic risk model. This model is conducive to investigating interplay between autophagy-related genes and HCC prognosis.


2020 ◽  
Author(s):  
Xiang Zhou ◽  
Keying Zhang ◽  
Fa Yang ◽  
Chao Xu ◽  
Jianhua Jiao ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is a disease with higher morbidity, mortality, and poor prognosis in the whole world. Understanding the crosslink between HCC and the immune system is essential for people to uncover a few potential and valuable therapeutic strategies. This study aimed to reveal the correlation between HCC and immune-related genes and establish a clinical evaluation model. Methods: We had analyzed the clinical information consisted of 373 HCC and 49 normal samples from the cancer genome atlas (TCGA). The differentially expressed genes (DEGs) were selected by the Wilcoxon test and the immune-related differentially expressed genes (IRDEGs) in DEGs were identified by matching DEGs with immune-related genes downloaded from the ImmPort database. Furthermore, the univariate Cox regression analysis and multivariate Cox regression analysis were performed to construct a prognostic risk model. Then, twenty-two types of tumor immune-infiltrating cells (TIICs) were downloaded from Tumor Immune Estimation Resource (TIMER) and were used to construct the correlational graphs between the TIICs and risk score by the CIBERSORT. Subsequently, the transcription factors (TFs) were gained in the Cistrome website and the differentially expressed TFs (DETFs) were achieved. Finally, the KEGG pathway analysis and GO analysis were performed to further understand the molecular mechanisms between DETFs and PDIRGs.Results: In our study, 5839 DEGs, 326 IRDEGs, and 31 prognosis-related IRDEGs (PIRDEGs) were identified. And 8 optimal PIRDEGs were employed to construct a prognostic risk model by multivariate Cox regression analysis. The correlation between risk genes and clinical characterizations and TIICs has verified that the prognostic model was effective in predicting the prognosis of HCC patients. Finally, several important immune-related pathways and molecular functions of the eight PIRDEGs were significantly enriched and there was a distinct association between the risk IRDEGs and TFs. Conclusion: The prognostic risk model showed a more valuable predicting role for HCC patients, and produced many novel therapeutic targets and strategies for HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hua Ye ◽  
Bin Zheng ◽  
Qi Zheng ◽  
Ping Chen

BackgroundWe aimed at determining the influence of old age on lymph node metastasis (LNM) and prognosis in T1 colorectal cancer (CRC).MethodsWe collected data from eligible patients in Surveillance, Epidemiology, and End Results database between 2004 and 2015. Independent predictors of LNM were identified by logistic regression analysis. Cox regression analysis, propensity score-matched analysis, and competing risks analysis were used to analyze the associations between old age and lymph node (LN) status and to validate the prognostic value of old age on cancer-specific survival (CSS).ResultsIn total, 10,092 patients were identified. Among them, 6,423 patients (63.6%) had greater than or equal to 12 examined lymph nodes (LNE ≥12), and 5,777 patients (57.7%) were 65 years or older. The observed rate of LNM was 4.6% (15 out of 325) in T1 CRC elderly patients, with tumor size &lt;3 cm, well differentiated, with negative carcinoembryonic antigen (CEA) level, and adenocarcinoma. Logistic regression models demonstrated that tumor size ≥3 cm (odds ratio, OR = 1.316, P = 0.038), poorly differentiated (OR = 3.716, P &lt; 0.001), older age (OR = 0.633 for ages 65–79 years, OR = 0.477 for age over 80 years, both P &lt;0.001), and negative CEA level (OR = 0.71, P = 0.007) were independent prognostic factors. Cox regression analysis demonstrated that CSS was not significantly different between elderly patients undergoing radical resection with LNE ≥12 and those with LNE &lt;12 (hazard ratio = 0.865, P = 0.153), which was firmly validated after a propensity score-matched analysis by a competing risks model.ConclusionsThe predictive value of tumor size, grading, primary site, histology, CEA level, and age for LNM should be considered in medical decision making about local resection. We found that tumor size was &lt;3 cm, well differentiated, negative CEA level, and adenocarcinoma in elderly patients with T1 colorectal cancer which was suitable for local excision.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260876
Author(s):  
Jun Yang ◽  
Jiaying Zhou ◽  
Cuili Li ◽  
Shaohua Wang

Background Neuroblastoma (NB) is the most common solid tumor in children. NB treatment has made significant progress; however, given the high degree of heterogeneity, basic research findings and their clinical application to NB still face challenges. Herein, we identify novel prognostic models for NB. Methods We obtained RNA expression data of NB and normal nervous tissue from TARGET and GTEx databases and determined the differential expression patterns of RNA binding protein (RBP) genes between normal and cancerous tissues. Lasso regression and Cox regression analyses identified the five most important differentially expressed genes and were used to construct a new prognostic model. The function and prognostic value of these RBPs were systematically studied and the predictive accuracy verified in an independent dataset. Results In total, 348 differentially expressed RBPs were identified. Of these, 166 were up-regulated and 182 down-regulated RBPs. Two hubs RBPs (CPEB3 and CTU1) were identified as prognostic-related genes and were chosen to build the prognostic risk score models. Multivariate Cox analysis was performed on genes from univariate Cox regression and Lasso regression analysis using proportional hazards regression model. A five gene prognostic model: Risk score = (-0.60901*expCPEB3)+(0.851637*expCTU1) was built. Based on this model, the overall survival of patients in the high-risk subgroup was lower (P = 2.152e-04). The area under the curve (AUC) of the receiver-operator characteristic curve of the prognostic model was 0.720 in the TARGET cohort. There were significant differences in the survival rate of patients in the high and low-risk subgroups in the validation data set GSE85047 (P = 0.1237e-08), with the AUC 0.730. The risk model was also regarded as an independent predictor of prognosis (HR = 1.535, 95% CI = 1.368–1.722, P = 2.69E-13). Conclusions This study identified a potential risk model for prognosis in NB using Cox regression analysis. RNA binding proteins (CPEB3 and CTU1) can be used as molecular markers of NB.


2021 ◽  
Author(s):  
Boxuan Liu ◽  
Yun Zhao ◽  
Shuanying Yang

Abstract Background: Lung adenocarcinoma is the most occurred pathological type among non-small cell lung cancer. Although huge progress has been made in terms of early diagnosis, precision treatment in recent years, the overall 5-year survival rate of a patient remains low. In our study, we try to construct an autophagy-related lncRNA prognostic signature that may guide clinical practice.Methods: The mRNA and lncRNA expression matrix of lung adenocarcinoma patients were retrieved from TCGA database. Next, we constructed a co-expression network of lncRNAs and autophagy-related genes. Lasso regression and multivariate Cox regression were then applied to establish a prognostic risk model. Subsequently, a risk score was generated to differentiate high and low risk group and a ROC curve and Nomogram to visualize the predictive ability of current signature. Finally, gene ontology and pathway enrichment analysis were executed via GSEA.Results: A total of 1,703 autophagy-related lncRNAs were screened and five autophagy-related lncRNAs (LINC01137, AL691432.2, LINC01116, AL606489.1 and HLA-DQB1-AS1) were finally included in our signature. Judging from univariate(HR=1.075, 95% CI: 1.046–1.104) and multivariate(HR =1.088, 95%CI = 1.057 − 1.120) Cox regression analysis, the risk score is an independent factor for LUAD patients. Further, the AUC value based on the risk score for 1-year, 3-year, 5-year, was 0.735, 0.672 and 0.662 respectively. Finally, the lncRNAs included in our signature were primarily enriched in autophagy process, metabolism, p53 pathway and JAK/STAT pathway. Conclusions: Overall, our study indicated that the prognostic model we generated had certain predictability for LUAD patients’ prognosis.


Sign in / Sign up

Export Citation Format

Share Document