scholarly journals Mechanisms of Action of Zishen Yutai pills in Treating Premature Ovarian Failure Determined by Integrating UHPLC-Q-TOF-MS and Network Pharmacology Analysis

Author(s):  
Lei Dang ◽  
Chunbo Zhang ◽  
Biru Su ◽  
Ning Na ◽  
Qiuling Huang ◽  
...  

Abstract Background: Zishen Yutai (ZSYT) pill, a patent Chinese medicine, has been widely used in the treatment of infertility, abortion, and adjunctive treatment of in vitro fertilization (IVF) for decades. Recently, the results of clinical observations showed that premature ovarian failure (POF) patients exhibited improved expression of steroids and clinical symptoms associated with hormone disorders after treatment with ZSYT pills. However, the pharmacological mechanism of action of these pills remains unclear.Methods: The components of ZSYT found in blood circulation were identified via ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) technique in the serum of POF mice after oral administration of ZSYT pills. The potential targets of components were screened using Traditional Chinese Medicine Systems Pharmacology Database, Traditional Chinese Medicine Database@Taiwan, Drugbank Database, PubChem, HIT, Pharmapper, and SwissTargetPrediction. The target genes associated with POF were collected from Online Mendelian Inheritance in Man Database, PharmGkb, Genecards, therapeutic target database, and Genetic Association Database. The overlapping genes between the potential targets of ZSYT components and the target genes associated with POF were clarified via protein-protein interaction (PPI), pathway, and network analysis.Results: Nineteen components in ZSYT pills were detected in the serum of POF mice after oral administration. A total of 695 ZSYT-related targets was screened, and 344 POF-related targets were collected. From the results of ZSYT-POF PPI analysis, CYP19A1, AKR1C3, ESR1, AR, and SRD5A2 were identified as key targets via network analysis, indicating their core role in the treatment of POF with ZSYT pills. Moreover, the pathway enrichment results suggested that ZSYT pills treat POF primarily by regulating neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and ovarian steroidogenesis.Conclusions: We demonstrated that regulation of neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and ovarian steroidogenesis are very likely to be therapeutic mechanism of ZSYT pills in treating POF. Our study suggests that combining the analysis of ZSYT pills components in blood in vivo in the POF models and network pharmacology prediction may offer a tool to characterize the mechanism of ZSYT pills in the POF.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ping Liu ◽  
Ping Yang ◽  
Lan Zhang

Background. Although the traditional Chinese medicine Shan-Zhu-Yu may be efficacious against depression, its mechanism of action is unknown. In this study, we aimed to explore the possible mechanisms of action of Shan-Zhu-Yu in the treatment of depression using network pharmacology. Methods. The active ingredients and targets of Shan-Zhu-Yu were obtained from the Traditional Chinese Medicine System Pharmacology Database (TCMSP) database and converted into gene names using UniProt. Then, the target genes of depression were collected using GeneCards and OMIM. Drug disease intersection genes were obtained using a Venn tool, and a protein-protein interaction network was constructed using STRING. Cytoscape was used to construct an active ingredients-targets-drug-disease network. GO and KEGG pathway enrichment analyses were performed using DAVID. Furthermore, Autodock was used to evaluate drug and target binding and explore possible molecular mechanisms. Results. We identified 9721 disease genes, 13 active ingredients, 50 target genes, and 48 drug disease intersecting genes. The results of the GO enrichment analysis suggested that Shan-Zhu-Yu affects the activity of G protein-coupled amine, neurotransmitter, steroid hormone, nuclear, and G protein-coupled neurotransmitter receptors in the treatment of depression by acting on hormone and nuclear receptor binding. The main signaling pathways were associated with neuroactive ligand-receptor interaction, calcium, cGMP-PKG, apoptosis, estrogen, p53, and AGE-RAGE. Molecular docking confirmed that the active components of Shan-Zhu-Yu (e.g., telocinobufagin and β-sitosterol) docked suitably with NR3C1, Bax, Bcl-2, and caspase-3. Shan-Zhu-Yu may exert its therapeutic effects on depression via multiple targets and pathways. Conclusions. The present study elucidates that Shan-Zhu-Yu suppresses the expression of Bax and caspase-3 and promotes that of NR3C1 and Bcl-2 through neuroactive ligand-receptor interaction and apoptosis signaling pathways. Therefore, Shan-Zhu-Yu is a potential treatment option for depression, and the results of this study will provide new reference points for future experimental research and a scientific basis for its widespread clinical application.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiayan Wu ◽  
Shengkun Hong ◽  
Xiankuan Xie ◽  
Wangmi Liu

Objective. Dipsaci Radix (DR) has been used to treat fracture and osteoporosis. Recent reports have shown that myeloid cells from bone marrow can promote the proliferation of lung cancer. However, the action and mechanism of DR has not been well defined in lung cancer. The aim of the present study was to define molecular mechanisms of DR as a potential therapeutic approach to treat lung cancer. Methods. Active compounds of DR with oral bioavailability ≥30% and drug-likeness index ≥0.18 were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform. The potential target genes of the active compounds and bone were identified by PharmMapper and GeneCards, respectively. The compound-target network and protein-protein interaction network were built by Cytoscape software and Search Tool for the Retrieval of Interacting Genes webserver, respectively. GO analysis and pathway enrichment analysis were performed using R software. Results. Our study demonstrated that DR had 6 active compounds, including gentisin, sitosterol, Sylvestroside III, 3,5-Di-O-caffeoylquinic acid, cauloside A, and japonine. There were 254 target genes related to these active compounds as well as to bone. SRC, AKT1, and GRB2 were the top 3 hub genes. Metabolisms and signaling pathways associated with these hub genes were significantly enriched. Conclusions. This study indicated that DR could exhibit the anti-lung cancer effect by affecting multiple targets and multiple pathways. It reflects the traditional Chinese medicine characterized by multicomponents and multitargets. DR could be considered as a candidate for clinical anticancer therapy by regulating bone physiological functions.


2021 ◽  
Author(s):  
qiu tiantian ◽  
Li DongHua ◽  
Liu Yu ◽  
Gao LiFang ◽  
Wei Chao ◽  
...  

Abstract Backgroud: Uterine fibroids (ULs) are the most common benign tumors of the reproductive tract in gynecology and their clinical presentations include menorrhagia, pelvic pressure, dysmenorrhea, and anemia. Surgical resection and the hormonal drug administration are the primary treatment. The plant Astragalus membranaceus (astragalus) has a long history of use in traditional Chinese medicine and studies have shown that it has antitumor effects. However, the role and mechanism of astragalus in ULs are not completely clear. The present study aimed to investigate the astragalus mechanism of action against ULs based on network pharmacology approach, in order to provid insights for the development of a safe and effective drug for the ULs treatment.Methods: The astragalus active ingredients and the potential drug targets were screened by the Traditional Chinese Medicine System Pharmacology Database and Analytical Platform (TCMSP). The gene expression profiles of ULs were obtained from Gene Expression Omnibus (GEO). The intersection of astragalus components target genes and differentially expressed genes between UL and normal patients were obtained using Perl software to provide the astragalus-ULs drug regulatory network. The protein–protein interaction (PPI) network was established using the STRING online database and Cytoscape software, followed by the topological properties analysis of the PPI networks. GO (Gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses were conducted by R software. The KEGG relational network was constructed using Cytoscape software. Results: A total of 21 astragalus active ingredients and 406 drug targets were obtained from the TCMSP. Seventeen of these targets overlap with ULs disease targets and were considered potential targets for the ULs treatment by astragalus. The analysis of the regulatory network showed that the astragalus active components with the most targets are quercetin, kaempferol, mangiferin, tetrodotoxin and isorhamnetin. Target genes with the highest Dgree values obtained from the PPI network analysis are estrogen receptor 1 (ESR1), tumor suppressor factor p53 (TP53), neurotrophic tyrosine kinase receptor 1 (NTRK1) and E3 ubiquitin ligase protein (CUL3). GO and KEGG enrichment analyses indicate that these targets are mainly involved in biological processes related to cellular response to reactive oxygen species, oxidative stress and response to lipopolysaccharides. The main signal transduction pathways involved include the IL-17 and TNF signaling pathways, the AGE-RAGE signaling pathway in diabetic complications and proteoglycans in cancer.Conclusions: The present study demonstrates that the astragalus therapeutic use against ULs have multicomponent and multi-target properties, providing a novel approach to further investigate the astragalus mechanism of action in the treatment of ULs.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Peicheng Zhong ◽  
Lijun Song ◽  
Mengyue Gao ◽  
Xiaotong Wang ◽  
Wenpan Tan ◽  
...  

Ethnopharmacological Relevance. Gegen Qinlian decoction (GGQLD) is an effective formula treatment for rotavirus enteritis (RVE), which has been applied for 1900 years. It consists of 4 herbal medicines corresponding to the four roles “monarch, minister, assistant, and guide,” which is the basic rule of prescription composition in traditional Chinese medicine (TCM). However, its active ingredients and therapeutic mechanism on RVE have not been fully investigated. Materials and Methods. In this study, a network pharmacology-based strategy was used to elucidate the mechanism of GGQLD for the treatment of RVE. Oral bioavailability and drug-likeness were taken as the judgment criteria to search the active ingredients of GGQLD in traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). The affinity between protein and ingredients was further determined using the similarity ensemble approach to find the corresponding targets. According to the genes related to enteritis in GeneCards database, the key targets were screened by intersections between drug and disease targets. And the therapeutic mechanism was predicted using the protein-protein interactions (PPIs), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, which was verified by detecting calcium ion concentration with the fluorescent probe. Result. 130 active ingredients were screened from GGQLD, including (R)-canadine, moupinamide, formononetin, and other flavonoids. They act on a total of 366 targets, which is mainly distributed in the biological process of hormone binding or signaling pathways of neuroactive ligand receptor interaction, serotonergic synapse, and calcium signaling pathway. Furthermore, serotonin receptors, adrenergic receptors, cholinergic receptors, and dopamine receptors in the enteric nervous system may be the key targets of RVE treatment by GGQLD. Conclusion. This study demonstrated that the potential mechanism that GGQLD can effectively improve the symptoms of RVE may depend on the regulation of calcium ions, serotonin, and gastrointestinal hormone ion that could mutually affect the intestinal nervous system.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jiewen Zhou ◽  
Qiuyan Wang ◽  
Zhinan Xiang ◽  
Qilin Tong ◽  
Jun Pan ◽  
...  

Xiao Ke Yin Shui (XKYS) formula is a traditional Chinese medicine formula treating type 2 diabetes mellitus (T2DM). XKYS formula consists of four herbs, i.e., Coptidis rhizoma, Liriopes radix, bitter melon, and Cassiae semen. Herein, the chemical profiles of four herb extracts were investigated, and further analysis of the underlying mechanism of XKYS formula treating T2DM was performed using network pharmacology. The main components were selected for our network-based research. Targets of XKYS formula were mainly collected from two databases, SwissTargetPrediction and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the text-mining method was also implemented. T2DM relating genes and therapeutic targets were collected from five databases. Subsequently, STRING and Cytoscape were employed for the analysis of protein-protein interaction (PPI) networks. Functional annotation and pathway analysis were conducted to investigate the functions and relating pathways of target genes. The content of 12 compounds in the herb extracts was determined. With the analysis of PPI networks, a total of 76 genes were found to be important nodes and could be defined as the main target genes regulated by XKYS formula in the treatment of T2DM and its complications. Components in XKYS formula mainly regulate proteins including protein kinase B (Akt), phosphatidylinositol 3-kinase (PI3K), insulin receptor substrate (IRS), and tumor necrosis factor (TNF). XKYS formula exerts therapeutic effects in a synergetic manner and exhibits antidiabetic effect mainly via reducing insulin resistance. These findings could be guidelines in the further investigation of this formula.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Junmin Chen ◽  
Jianyong Chen ◽  
Jingrong Lu

Oroxylum indicum (O. indicum) is an important traditional Chinese medicine that exerts a wide spectrum of pharmacological activities. However, the pharmacological effect of O. indicum and its mechanism of action have not to be systematically elucidated yet. In this study, the druggability for active compounds of O. indicum was assessed via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), and the potential drug targets of O. indicum were identified using PharmMapper database. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed via WebGestalt. Drug-target-pathway networks were constructed using Cytoscape to give a visual view. Our findings revealed that O. indicum has extremely superb druggability with 41 putative identified target genes. GO, KEGG, and network analyses showed that these targets were associated with inflammatory immunoreactions, cancer, and other biological processes. In summary, O. indicum is predicted to target multiple genes/proteins and pathways that shape a network which can exert systematic pharmacological effects.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yingyin Chen ◽  
Xinyi Chai ◽  
Ying Zhao ◽  
Xinqian Yang ◽  
Caiting Zhong ◽  
...  

Background. Zishen Yutai Pills (ZSYTP) is a prescription based on traditional Chinese medicine used to treat kidney-deficient pattern in traditional Chinese medicine. It is also widely used clinically for the treatment of polycystic ovary syndrome (PCOS) with positive results. This study aims to explore the potential pharmacological mechanism of ZSYTP for the treatment of PCOS by a network pharmacology approach. Methods. Compounds were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine and TCM Database@ Taiwan, and the corresponding targets were retrieved from PubChem, Swiss Target Prediction, STITCH, and DrugBank. Meanwhile, PCOS targets were retrieved from the GeneCards database, the Online Mendelian Inheritance in Man database, National Center for Biotechnology Information Database, and DrugBank. Subsequently, multiple network construction and gene enrichment analyses were conducted with Cytoscape 3.8.2 software. Based on the previous results in the study, molecular docking simulations were done. Results. 205 active compounds and 478 ZSYTP target genes were obtained after screening by ADME consideration. 1881 disease-related targets were obtained after removing duplicates. 148 intersection target genes between drug and disease targets were isolated. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes analysis highlighted multiple gene functions and different signaling pathways to treat PCOS. Further molecular docking demonstrated the practicality of in vivo action of ZSYTP to a certain extent. Conclusions. It is possible that the pharmacological effect of ZSYTP on PCOS is linked to the hypoxia-inducible factor 1 (HIF-1) signaling pathway, improving insulin resistance, the variation on gene expression such as RNA splicing, and regulation of mRNA metabolic process. This study paves the way for further research investigating its mechanisms.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Ming-Fei Guo ◽  
Ya-Ji Dai ◽  
Jia-Rong Gao ◽  
Pei-Jie Chen

Background. Diabetic nephropathy (DN), characterized by hyperglycemia, hypertension, proteinuria, and edema, is a unique microvascular complication of diabetes. Traditional Chinese medicine (TCM) Astragalus membranaceus (AM) has been widely used for DN in China while the pharmacological mechanisms are still unclear. This work is aimed at undertaking a network pharmacology analysis to reveal the mechanism of the effects of AM in DN. Materials and Methods. In this study, chemical constituents of AM were obtained via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), and the potential targets of AM were identified using the Therapeutic Target Database (TTD). DisGeNET and GeneCards databases were used to collect DN-related target genes. DN-AM common target protein interaction network was established by using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to further explore the DN mechanism and therapeutic effect of AM. The network diagrams of the active component-action target and protein-protein interaction (PPI) networks were constructed using Cytoscape software. Results. A total of 16 active ingredients contained and 78 putative identified target genes were screened from AM, of which 42 overlapped with the targets of DN and were considered potential therapeutic targets. The analysis of the network results showed that the AM activity of component quercetin, formononetin, calycosin, 7-O-methylisomucronulatol, and quercetin have a good binding activity with top ten screened targets, such as VEGFA, TNF, IL-6, MAPK, CCL3, NOS3, PTGS2, IL-1β, JUN, and EGFR. GO and KEGG analyses revealed that these targets were associated with inflammatory response, angiogenesis, oxidative stress reaction, rheumatoid arthritis, and other biological process. Conclusions. This study demonstrated the multicomponent, multitarget, and multichannel characteristics of AM, which provided a novel approach for further research of the mechanism of AM in the treatment of DN.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yin Qu ◽  
Zhijun Zhang ◽  
Yafeng Lu ◽  
De Zheng ◽  
Yang Wei

Background. The healing process of the surgical wound of anal fistulotomy is much slower because of the presence of stool within the wound. Cuyuxunxi (CYXX) prescription is a Chinese herbal fumigant that is being used to wash surgical wound after anal fistulotomy. This study aimed at investigating the molecular mechanism of CYXX prescription using a network pharmacology-based strategy. Materials and Methods. The active compounds in each herbal medicine were retrieved from the traditional Chinese medicine systems pharmacology (TCMSP) database and in Traditional Chinese Medicine Integrated Database (TCMID) analysis platform based on the criteria of oral bioavailability ≥40% and drug-likeness ≥0.2. The disease-related target genes were extracted from the Comparative Toxicogenomics Database. Protein-protein interaction network was built for the overlapped genes as well as functional enrichment analysis. Finally, an ingredient-target genes-pathway network was built by integrating all information. Results. A total of 375 chemical ingredients of the 5 main herbal medicines in CYXX prescription were retrieved from TCMSP database and TCMID. Among the 375 chemical ingredients, 59 were active compounds. Besides, 325 target genes for 16 active compounds in 3 herbal medicines were obtained. Functional enrichment analysis revealed that these overlapped genes were significantly related with immune response, biosynthesis of antibiotics, and complement and coagulation cascades. A comprehensive network which contains 133 nodes (8 disease nodes, 3 drug nodes, 8 ingredients, 103 target gene nodes, 7 GO nodes, and 4 pathway nodes) was built. Conclusion. The network built in this study might aid in understanding the action mechanism of CYXX prescription at molecular level to pathway level.


Sign in / Sign up

Export Citation Format

Share Document