Complete Genome Sequence of Pseudomonas Stutzeri S116 Provides Insights into the Mechanism of Microbial Fuel Cells

Author(s):  
Peng Li ◽  
Wenfeng Yuan ◽  
Yitie Huang ◽  
Caiyu Zhang ◽  
Chide Ni ◽  
...  

Abstract To identify suitable biocatalysts applied in microbial fuel cells (MFCs), Pseudomonas stutzeri S116 isolated from marine sludge was investigated, which possessed excellcent bioelectricity generation ability (BGA). Herein, P. stutzeri as a bioanode and biocathode achieved maximum output voltage (254.2 mV and 226.0 mV), and power density of (765 mW/m2 and 656.6 mW/m2). Complete genome sequencing of P. stutzeri was performed to reveal its potential microbial functions. The results exhibited that the strain was the ecologically dominant Pseudomonas, and its primary annotations were associated with energy production and conversion (6.84%), amino acid transport and metabolism (6.82%) and inorganic ion transport and metabolism (6.77%). The thirty-six genes involved in oxidative phosphorylation indicate that strain possesses an integrated electron transport chain. Moreover, many genes encoding redox mediators (mainly riboflavin and phenazine) were detected in the databases. Simultaneously, thiosulfate oxidization and dissimilatory nitrate reduction were annotated in the sulfur metabolism and nitrogen metabolism pathway. Gene function and cyclic voltammetry (CV) analysis indicated BGA of P. stutzeri probably was attributed to its cytochrome c and redox mediators, which enhance extracellular electron transfer (EET) rate.

2013 ◽  
Vol 38 (35) ◽  
pp. 15598-15605 ◽  
Author(s):  
Bor-Yann Chen ◽  
Chung-Chuan Hsueh ◽  
Shi-Qi Liu ◽  
Jhao Yin Hung ◽  
Yan Qiao ◽  
...  

2018 ◽  
Vol 6 (19) ◽  
Author(s):  
Kengo Inoue ◽  
Yoshitoshi Ogura ◽  
Yoshihiro Kawano ◽  
Tetsuya Hayashi

ABSTRACT Geobacter sulfurreducens is known to be a dominant species in the anode biofilms of microbial fuel cells. Here, we report the complete genome sequence of G. sulfurreducens strain YM18. Strain YM18 was isolated from a biofilm formed on an anode poised at −400 mV (versus an Ag/AgCl electrode) in a bioelectrochemical system.


2015 ◽  
Vol 12 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Larisa Kiseleva ◽  
Sofya K. Garushyants ◽  
Hongwu Ma ◽  
David J.W. Simpson ◽  
Viatcheslav Fedorovich ◽  
...  

Summary The combined processes of microbial biodegradation accompanied by extracellular electron transfer make microbial fuel cells (MFCs) a promising new technology for cost-effective and sustainable wastewater treatment. Although a number of microbial species that build biofilms on the anode surfaces of operating MFCs have been identified, studies on the metagenomics of entire electrogenic communities are limited. Here we present the results of wholegenome metagenomic analysis of electrochemically active robust anodic microbial communities, and their anaerobic digester (AD) sludge inocula, from two pilot-scale MFC bioreactors fed with different distillery wastewaters operated under ambient conditions in distinct climatic zones. Taxonomic analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were abundant in AD sludge from distinct climatic zones, and constituted the dominant core of the MFC microbiomes. Functional analysis revealed species involved in degradation of organic compounds commonly present in food industry wastewaters. Also, accumulation of methanogenic Archaea was observed in the electrogenic biofilms, suggesting a possibility for simultaneous electricity and biogas recovery from one integrated wastewater treatment system. Finally, we found a range of species within the anode communities possessing the capacity for extracellular electron transfer, both via direct contact and electron shuttles, and show differential distribution of bacterial groups on the carbon cloth and activated carbon granules of the anode surface. Overall, this study provides insights into structural shifts that occur in the transition from an AD sludge to an MFC microbial community and the metabolic potential of electrochemically active microbial populations with wastewater-treating MFCs.


Sign in / Sign up

Export Citation Format

Share Document