High-performance electrical properties of La-based perovskite ceramics for the functional phase of thick film resistors

Author(s):  
Yongcheng Lu ◽  
Yuanxun Li ◽  
Daming Chen ◽  
Rui Peng ◽  
Qinghui Yang ◽  
...  

Abstract In order to explore an economical functional phase alternative material for thick film resistors, the crystal structure, microstructure, and electrical properties of (1-x)LSCN + xLCNZ (x = 0.0–1.0) composite ceramics were studied through solid-state reaction experiments. The composite ceramics were characterized by x–ray diffraction, scanning electron microscopy, energy dispersive x–ray spectroscopy, and DC four–probe method. Results suggested that the main phases of LSCN and LCNZ were formed, along with a small part of impurity phases. The addition of LCNZ to LSCN decreased the electrical conductivity and changed the TCR from positive to negative. Zero TCR could be achieved around 0.6 < x < 0.8 and relatively low absolute TCR values could be obtained for the samples of 0.4 ≤ x ≤ 0.8. The ceramic of 0.6LSCN + 0.4LCNZ showed the optimal performances of conductivity = 1923 S/cm, TCR = 379.54 ppm/℃, and relative density = 95.05%.

2021 ◽  
Vol 19 (3) ◽  
pp. 56-61
Author(s):  
Bilal Ahmed Omar ◽  
Rabab Shakour Ali

The ferritic nanocomposite which prepared has the chemical formula of (Co0.25𝑁𝑖0.25Zn0.5LaxFe2−xO4), for different values of (X= 0, 0. 25, 0. 5, 0. 75), by using the spontaneous combustion-gel method, where calcination had been at temperature of (700˚C) for two hours; then studied the structural properties of the resulting ferrite via X-Ray diffraction (XRD), and Scanning Electron Microscopy (SEM) The results denote that the ferrite has a unique phase with a spinal-shaped crystal structure and a granular size are (23-36) nm, with increase in lattice constant of decrease in porosity, and electrical properties were also take in to consideration, like value of dielectric constant, the loss coefficient also observed via increase the frequency. The alternating electrical conductivity (σa.c) increases with increasing frequency.


2010 ◽  
Vol 105-106 ◽  
pp. 317-319
Author(s):  
Yan Yan Chen ◽  
Ming Zou ◽  
Yuan Wang ◽  
Yun Zhang

Influences of sintering temperature on microstructure and electrical properties of TiO2 varistor ceramics were investigated. Morphologies of TiO2 ceramics samples were characterized using scanning electron microscope. The phase composition and crystal structure were researched by X-ray diffraction. The frequency dependences of the samples capacitance were determined using LCR meter, the varistor voltage V1mA and nonlinear coefficient α were discussed by experimental method. The results showed that TiO2 ceramics sintered at 1350°C for 2 h possesses fine microstructure and optimal electrical properties. However, the electrical properties of samples will deteriorate as excessive sintering temperature.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


2006 ◽  
Vol 980 ◽  
Author(s):  
Kazuhiro Ishikawa ◽  
Naoshi Kasagami ◽  
Tomoyuki Takano ◽  
Kiyoshi Aoki

AbstractIn order to develop non-Pd based high performance hydrogen permeation alloys, microstructure, crystal structure and hydrogen permeability of duplex phase M-ZrNi (M=V and Ta) alloys were investigated using a scanning electron microscope, an X-ray diffractometer and a gas flow meter. These results were compared with those of Nb-ZrNi ones which have been previously published. The hydrogen permeation was impossible in the V-ZrNi alloys, because they were brittle in the as-cast state. On the other hand, duplex phase alloys consisting of the bcc-(Ta, Zr) solid solution and the orthorhombic ZrNi (Cmcm) intermetallic compound were formed and hydrogen permeable in the Ta-ZrNi system. The Ta40Zr30Ni30 alloy shows the highest value of hydrogen permeability of 4.1×10-8 [molH2m-1s-1Pa-0.5] at 673 K, which is three times higher than that of pure Pd.


2011 ◽  
Vol 495 ◽  
pp. 190-193 ◽  
Author(s):  
Mehdi Mirzayi ◽  
Mohammad Hoseen Hekmatshoar ◽  
Abdolazim Azimi

Nanometer-sized ZnO powder was synthesized at low decomposing temperature by polyacrylamide-gel method where Acrylamide was used as monomer, and N,N-methylene-bisacrylamide as lattice reagent. The characteristic of powders were studied by X-ray diffraction and scanning electron microscope (SEM). The results indicated uniform distribution of nanoZnO particles. Also electrical properties were investigated at different sintering temperatures of 800, 900 and 1000 ° C. It was observed that increase in sintering temperature, resulted in increase in the grain size of the varistor ceramics. The observed nonlinearity in current – voltage characteristic was explained by the existence of potential barrier at the grain boundaries and lowering of the barriers.


2011 ◽  
Vol 383-390 ◽  
pp. 822-825
Author(s):  
Ping Luan ◽  
Jian Sheng Xie ◽  
Jin Hua Li

Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films were detected by X-ray diffraction(XRD), the main crystal phase peak is at 2θ=42.458°; The resistivity of films were measured by SDY-4 four-probe meter; The conductive type of the films were tested by DLY-2 conductivity type testing instrument. The results show that the annealing temperature and time effect on the crystal resistivity and crystal structure greatly.


2013 ◽  
Vol 802 ◽  
pp. 119-123
Author(s):  
Supamas Wirunchit ◽  
Rangson Muanghlua ◽  
Supamas Wirunchit ◽  
Wanwilai Vittayakorn ◽  
Naratip Vittayakorn

Nanocrystalline barium zirconium titanate, BaZr0.4Ti0.6O3, was synthesized successfully via the sonochemical process. The effects of reaction time on the precipitation of Ba(Zr,Ti)O3 particles were investigated briefly. The crystal structure as well as molecular vibrations and morphology were investigated. X-ray diffraction indicated that the powders exhibited a single phase perovskite structure, without the presence of pyrochlore or unwanted phases at the reaction time of 60 min. Nanocrystals were formed before being oriented and aggregated into large particles in aqueous solution under ultrasonic irradiation. A scanning electron microscopy (SEM) photograph showed the BZT powder as spherical in shape with uniform nanosized features.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2759 ◽  
Author(s):  
Ioannis Papadimitriou ◽  
Claire Utton ◽  
Panos Tsakiropoulos

The Al-Nb-Sn phase diagram was studied experimentally in the Nb-rich region to provide important phase equilibria information for alloy design of Nb-silicide based materials for aero engine applications. Three alloys were produced: Nb-17Al-17Sn, Nb-33Al-13Sn and Nb-16Al-20Sn (at.%). As-cast and heat-treated alloys (900 and 1200 °C) were analysed using XRD (X-ray diffraction) and SEM/EDS (scanning electron microscopy/ electron dispersive x-ray spectroscopy). Tin showed a high solubility in Nb2Al, reaching up to 21 at.% in the Sn-rich areas, substituting for Al atoms. Tin and Al also substituted for each other in the A15 phases (Nb3Al and Nb3Sn). Tin showed limited solubility in NbAl3, not exceeding 3.6 at.% as it substituted Al atoms. The solubility of Al in NbSn2 varied from 4.8 to 6.8 at.%. A ternary phase, Nb5Sn2Al with the tI32 W5Si3 crystal structure, was found to be stable. This phase was observed in the 900 °C heat-treated samples, but not in the 1200 °C heated samples.


2010 ◽  
Vol 173 ◽  
pp. 102-105 ◽  
Author(s):  
Khairul Arifah Saharudin ◽  
Srimala Sreekantan

In this paper, anodization of Ti foil was carried out in ethylene glycol (EG) containing 5 wt% NH4F solution and 0 to 1.5 wt% of water at 50 V for 60 min. The pH of the bath was kept constant at ~pH7. The crystal structure was studied by X-Ray Diffraction (XRD) analysis, and the morphology was observed via field emission scanning electron microscopy (FESEM). TiO2 nanotube with aspect ratio of 100 was obtained in EG containing less than 1wt % water. The nanotubes wall was very smooth. Increasing the water content > 1wt % results in short nanotubes of approximately 6.2μm with aspect ratio of 62. As anodized, nanotubes were amorphous and annealed at 400 °C promote 100 % anatase phase. Photocatalytic activity of the nanotubes produced at different water content was also evaluated by the degradation of methyl orange and the detail of the observation was discussed thoroughly in this paper.


Sign in / Sign up

Export Citation Format

Share Document