Establishment and validation of finite element model of ossification of cervical posterior longitudinal ligament with intervertebral fusion

2020 ◽  
Author(s):  
Li Hui ◽  
Liu Huiqing ◽  
Zhang Yaning

Abstract [Background ]: To establish a three-dimensional finite element model of ossification of the posterior longitudinal ligament of the cervical spine with intervertebral fusion and verify its effectiveness, and provide a platform for finite element calculation and biomechanical analysis in the later stage.[Method]: Select the Department of Spinal Surgery, Linfen People's Hospital A volunteer imported 719 DICOM format images of cervical spine CT scans into Mimics modeling software to build a preliminary 3D model in the stl format, and used Geomagic Studio 2013 software to refine and refine the 3D model to smooth out noise and generate NURBS surfaces The model was then imported into the finite element analysis software Ansys workbench 15.0, adding ligaments and intervertebral discs, meshing, assigning material properties, and simulating 6 activities of the human cervical spine, and comparing them with references.[Results]: A total of 7 Cervical vertebral body, 1 thoracic vertebral body, 5 intervertebral discs and ligaments, etc., with a total of 320512 nodes and 180905 units. It has a realistic appearance, high degree of detail reduction, and ossification of the cervical longitudinal longitudinal ligament with good geometric similarity Incorporate a three-dimensional finite element model of intervertebral fusion. In flexion and extension, left and right lateral flexion, and axial rotation activity compared with references, there is not much difference.[Conclusion]: OPLL merger interbody fusion dimensional finite element model has good mechanical and geometric similarity after similarity cervical established in this study, the model can provide a platform for the latter to further biomechanical analysis.

1992 ◽  
Vol 25 (7) ◽  
pp. 770
Author(s):  
François Lavaste ◽  
Nathalie Maurel ◽  
Wafa Skalli ◽  
Michel Noat

1999 ◽  
Vol 121 (2) ◽  
pp. 206-214 ◽  
Author(s):  
M. L. Villarraga ◽  
R. C. Anderson ◽  
R. T. Hart ◽  
D. H. Dinh

The development of a three-dimensional finite element model of a posteriorly plated canine cervical spine (C3-C6) including contact nonlinearities is described. The model was created from axial CT scans and the material properties were derived from the literature. The model demonstrated sufficient accuracy from the results of a mesh convergence test. Significant steps were taken toward establishing model validation by comparison of plate surface strains with a posteriorly plated canine cervical spine under three-point bending. This model was developed to better characterize the contact pressures at the various interfaces under average physiologic canine loading. The analysis showed that the screw–plate interfaces had the highest values of all the mechanical parameters evaluated.


Sign in / Sign up

Export Citation Format

Share Document