scholarly journals Mathematical modelling of pneumonia dynamics of children under the age of five

Author(s):  
Idowu Kabir Oluwatobi ◽  
Erinle-Ibrahim L.M

Abstract This paper work was designed to study the effect of treatment on the transmission of pneumonia infection. When studying the transmission dynamics of infectious diseases with an objective of suggesting control measures, it is important to consider the stability of equilibrium points. In this paper, basic reproduction number, effective reproduction number, existences and stability of the equilibrium point were established.Using Lyaponov function we discovered that the disease free equilibrium is unstable. The results are presented in graphs and it is discovered that the spread of the infection will be greatly affected by the rate of treatment and natural immunity.

Author(s):  
Getachew Beyecha Batu ◽  
Eshetu Dadi Gurmu

In this paper, we have developed a deterministic mathematical model that discribe the transmission dynamics of novel corona virus with prevention control. The disease free and endemic equilibrium point of the model were calculated and its stability analysis were prformed. The reproduction number R0 of the model which determine the persistence of the disease or not was calculated by using next generation matrix and also used to determine the stability of the disease free and endemic equilibrium points which exists conditionally. Furthermore, sensitivity analysis of the model was performed on the parameters in the equation of reproduction to determine their relative significance on the transmission dynamics of COVID- 19 pandemic disease. Finally the simulations were carried out using MATLAB R2015b with ode45 solver. The simulation results illustrated that applying prevention control can successfully reduces the transmission dynamic of COVID-19 infectious disease.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 518
Author(s):  
Christopher Saaha Bornaa ◽  
Baba Seidu ◽  
Yakubu Ibrahim Seini

A deterministic model is proposed to describe the transmission dynamics of coronavirus infection with early interventions. Epidemiological studies have employed modeling to unravel knowledge that transformed the lives of families, communities, nations and the entire globe. The study established the stability of both disease free and endemic equilibria. Stability occurs when the reproduction number, R0, is less than unity for both disease free and endemic equilibrium points. The global stability of the disease-free equilibrium point of the model is established whenever the basic reproduction number R0 is less than or equal to unity. The reproduction number is also shown to be directly related to the transmission probability (β), rate at which latently infected individuals join the infected class (δ) and rate of recruitment (Λ). It is inversely related to natural death rate (μ), rate of early treatment (τ1), rate of hospitalization of infected individuals (θ) and Covid-induced death rate (σ). The analytical results established are confirmed by numerical simulation of the model.


2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2 epidemic.


2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2epidemic.


2021 ◽  
Vol 25 (7) ◽  
pp. 1107-1114
Author(s):  
E.I. Akinola ◽  
B.E. Awoyemi ◽  
I.A. Olopade ◽  
O.D. Falowo ◽  
T.O. Akinwumi

In this study, the diarrhoea model is developed based on basic mathematical modelling techniques leading to a system (five compartmental model) of ordinary differential equations (ODEs). Mathematical analysis of the model is then carried out on the uniqueness and existence of the model to know the region where the model is epidemiologically feasible. The equilibrium points of the model and the stability of the disease-free state were also derived by finding the reproduction number. We then progressed to running a global sensitivity analysis on the reproduction number with respect to all the parameters in it, and four (4) parameters were found sensitive. The work was concluded with numerical simulations on Maple 18 using Runge-Kutta method of order four (4) where the values of six (6) parameters present in the model were each varied successively while all other parameters were held constant so as to know the behaviour and effect of the varied parameter on how diarrhoea spreads in the population. The results from the sensitivity analysis and simulations were found to be in sync.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 518
Author(s):  
Christopher Saaha Bornaa ◽  
Baba Seidu ◽  
Yakubu Ibrahim Seini

A deterministic model is proposed to describe the transmission dynamics of coronavirus infection with early interventions. Epidemiological studies have employed modeling to unravel knowledge that transformed the lives of families, communities, nations and the entire globe. The study established the stability of both disease free and endemic equilibria. Stability occurs when the reproduction number, R0, is less than unity for both disease free and endemic equilibrium points. The global stability of the disease-free equilibrium point of the model is established whenever the basic reproduction number R0 is less than or equal to unity. The reproduction number is also shown to be directly related to the transmission probability (β), rate at which latently infected individuals join the infected class (δ) and rate of recruitment (Λ). It is inversely related to natural death rate (μ), rate of early treatment (τ1), rate of hospitalization of infected individuals (θ) and Covid-induced death rate (σ). The analytical results established are confirmed by numerical simulation of the model.


2021 ◽  
Vol 58 (1) ◽  
pp. 3008-3015
Author(s):  
Gurpreet Singh Tuteja

In this paper, we study mathematically the psychological effect of media on the transmission dynamics of contagious diseases [1]. The SIR model based on compartment theory[18] consisting of three compartments: susceptible, infected and recovered with the transmission function as modified Beddington-DeAngelis function including a parameter governing media awareness is considered. The governing differential equations are defined for the dynamical system. The reproduction number 𝑅0, of the model, is calculated using the Jacobian matrix method [12] and is found to depend on m (parameter controlling media) and δ (a measure of inhibition due to awareness of infected). The stability of the dynamical system at the equilibrium points is discussed. The numerical solution is obtained by varying the introduced parameters of the above-said function and analysed graphically.


2020 ◽  
Vol 14 (2) ◽  
pp. 297-304
Author(s):  
Joko Harianto ◽  
Titik Suparwati ◽  
Inda Puspita Sari

Abstrak Artikel ini termasuk dalam ruang lingkup matematika epidemiologi. Tujuan ditulisnya artikel ini untuk mendeskripsikan dinamika lokal penyebaran suatu penyakit dengan beberapa asumsi yang diberikan. Dalam pembahasan, dianalisis titik ekuilibrium model epidemi SVIR dengan adanya imigrasi pada kompartemen vaksinasi. Dengan langkah pertama, model SVIR diformulasikan, kemudian titik ekuilibriumnya ditentukan, selanjutnya, bilangan reproduksi dasar ditentukan. Pada akhirnya, kestabilan titik ekuilibirum yang bergantung pada bilangan reproduksi dasar ditentukan secara eksplisit. Hasilnya adalah jika bilangan reproduksi dasar kurang dari satu maka terdapat satu titik ekuilbirum dan titik ekuilbrium tersebut stabil asimtotik lokal. Hal ini berarti bahwa dalam kondisi tersebut penyakit akan cenderung menghilang dalam populasi. Sebaliknya, jika bilangan reproduksi dasar lebih dari satu, maka terdapat dua titik ekuilibrium. Dalam kondisi ini, titik ekuilibrium endemik stabil asimtotik lokal dan titik ekuilibrium bebas penyakit tidak stabil. Hal ini berarti bahwa dalam kondisi tersebut penyakit akan tetap ada dalam populasi. Kata Kunci : Model SVIR, Stabil Asimtotik Lokal Abstract This article is included in the scope of mathematical epidemiology. The purpose of this article is to describe the dynamics of the spread of disease with some assumptions given. In this paper, we present an epidemic SVIR model with the presence of immigration in the vaccine compartment. First, we formulate the SVIR model, then the equilibrium point is determined, furthermore, the basic reproduction number is determined. In the end, the stability of the equilibrium point is determined depending on the number of basic reproduction. The result is that if the basic reproduction number is less than one then there is a unique equilibrium point and the equilibrium point is locally asymptotically stable. This means that in those conditions the disease will tend to disappear in the population. Conversely, if the basic reproduction number is more than one, then there are two equilibrium points. The endemic equilibrium point is locally asymptotically stable and the disease-free equilibrium point is unstable. This means that in those conditions the disease will remain in the population. Keywords: SVIR Model, Locally Asymptotically stable.


2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
M. De la Sen ◽  
R. Nistal ◽  
S. Alonso-Quesada ◽  
A. Ibeas

A formal description of typical compartmental epidemic models obtained is presented by splitting the state into an infective substate, or infective compartment, and a noninfective substate, or noninfective compartment. A general formal study to obtain the reproduction number and discuss the positivity and stability properties of equilibrium points is proposed and formally discussed. Such a study unifies previous related research and it is based on linear algebraic tools to investigate the positivity and the stability of the linearized dynamics around the disease-free and endemic equilibrium points. To this end, the complete state vector is split into the dynamically coupled infective and noninfective compartments each one containing the corresponding state components. The study is then extended to the case of commensurate internal delays when all the delays are integer multiples of a base delay. Two auxiliary delay-free systems are defined related to the linearization processes around the equilibrium points which correspond to the zero delay, i.e., delay-free, and infinity delay cases. Those auxiliary systems are used to formulate stability and positivity properties independently of the delay sizes. Some examples are discussed to the light of the developed formal study.


Author(s):  
Tanvi ◽  
Mohammad Sajid ◽  
Rajiv Aggarwal ◽  
Ashutosh Rajput

In this paper, we have proposed a nonlinear mathematical model of different classes of individuals for coronavirus (COVID-19). The model incorporates the effect of transmission and treatment on the occurrence of new infections. For the model, the basic reproduction number [Formula: see text] has been computed. Corresponding to the threshold quantity [Formula: see text], the stability of endemic and disease-free equilibrium (DFE) points are determined. For [Formula: see text], if the endemic equilibrium point exists, then it is locally asymptotically stable, whereas the DFE point is globally asymptotically stable for [Formula: see text] which implies the eradication of the disease. The effects of various parameters on the spread of COVID-19 are discussed in the segment of sensitivity analysis. The model is numerically simulated to understand the effect of reproduction number on the transmission dynamics of the disease COVID-19. From the numerical simulations, it is concluded that if the reproduction number for the coronavirus disease is reduced below unity by decreasing the transmission rate and detecting more number of infectives, then the epidemic can be eradicated from the population.


Sign in / Sign up

Export Citation Format

Share Document