scholarly journals CNFE-SE: A novel hybrid approach combining complex network-based feature engineering and stacked ensemble to predict the success of Intrauterine Insemination and ranking the features

2020 ◽  
Author(s):  
Sima Ranjbari ◽  
Toktam Khatibi ◽  
Ahmad Vosough Taghi Dizaj ◽  
Hesamoddin Sajadi ◽  
Mehdi Totonchi ◽  
...  

Abstract Background: Intrauterine Insemination (IUI) outcome prediction is a challenging issue with which the assisted reproductive technology (ART) practitioners are dealing. Predicting the success or failure of IUI based on the couples' features can assist the physicians to make the appropriate decision for suggesting IUI to the couples or not and/or continuing the treatment or not for them. The large number of studies that have been focused on predicting the IVF and ICSI outcome by machine learning algorithms. But, to the best of our knowledge, a few studies have been focused on predicting the outcome of IUI. The main aim of this study is to develop an automatic classification and feature scoring method to predict intrauterine insemination (IUI) outcome and ranking of the most significant features, based on patients' cycle’s characteristics under IUI treatment.Methods: For this purpose, a novel hybrid approach combining complex network-based feature engineering and stacked ensemble (CNFE-SE) is proposed. Three complex networks are extracted considering the patients' data similarities. The feature engineering step is performed on the complex networks. The original feature set and/or the features engineered are fed to the proposed stacked ensemble to classify and predict IUI outcome for couples per IUI treatment cycle. Our study is a retrospective study of a 5-year couples' data undergoing IUI. Data is collected from Reproductive Biomedicine Research Center, Royan Institute for 8,360 couples who underwent 11,255 IUI cycles were included. Results: Experimental results show that the proposed method outperforms the compared methods with AUC of 0.84 ± 0.01, sensitivity of 0.79 ± 0.01, specificity of 0.91 ± 0.01, and accuracy of 0.85 ± 0.01 for the prediction of IUI outcome. Conclusions: The most important predictors for predicting IUI outcome are semen parameters (sperm motility and concentration) as well as female BMI.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sima Ranjbari ◽  
Toktam Khatibi ◽  
Ahmad Vosough Dizaji ◽  
Hesamoddin Sajadi ◽  
Mehdi Totonchi ◽  
...  

Abstract Background Intrauterine Insemination (IUI) outcome prediction is a challenging issue which the assisted reproductive technology (ART) practitioners are dealing with. Predicting the success or failure of IUI based on the couples' features can assist the physicians to make the appropriate decision for suggesting IUI to the couples or not and/or continuing the treatment or not for them. Many previous studies have been focused on predicting the in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcome using machine learning algorithms. But, to the best of our knowledge, a few studies have been focused on predicting the outcome of IUI. The main aim of this study is to propose an automatic classification and feature scoring method to predict intrauterine insemination (IUI) outcome and ranking the most significant features. Methods For this purpose, a novel approach combining complex network-based feature engineering and stacked ensemble (CNFE-SE) is proposed. Three complex networks are extracted considering the patients' data similarities. The feature engineering step is performed on the complex networks. The original feature set and/or the features engineered are fed to the proposed stacked ensemble to classify and predict IUI outcome for couples per IUI treatment cycle. Our study is a retrospective study of a 5-year couples' data undergoing IUI. Data is collected from Reproductive Biomedicine Research Center, Royan Institute describing 11,255 IUI treatment cycles for 8,360 couples. Our dataset includes the couples' demographic characteristics, historical data about the patients' diseases, the clinical diagnosis, the treatment plans and the prescribed drugs during the cycles, semen quality, laboratory tests and the clinical pregnancy outcome. Results Experimental results show that the proposed method outperforms the compared methods with Area under receiver operating characteristics curve (AUC) of 0.84 ± 0.01, sensitivity of 0.79 ± 0.01, specificity of 0.91 ± 0.01, and accuracy of 0.85 ± 0.01 for the prediction of IUI outcome. Conclusions The most important predictors for predicting IUI outcome are semen parameters (sperm motility and concentration) as well as female body mass index (BMI).


2020 ◽  
Author(s):  
Sima Ranjbari ◽  
Toktam Khatibi ◽  
Ahmad Vosough Taghi Dizaj ◽  
Hesamoddin Sajadi ◽  
Mehdi Totonchi ◽  
...  

Abstract Background: Intrauterine Insemination (IUI) outcome prediction is a challenging issue which the assisted reproductive technology (ART) practitioners are dealing with. Predicting the success or failure of IUI based on the couples' features can assist the physicians to make the appropriate decision for suggesting IUI to the couples or not and/or continuing the treatment or not for them. Many previous studies have been focused on predicting the in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcome using machine learning algorithms. But, to the best of our knowledge, a few studies have been focused on predicting the outcome of IUI. The main aim of this study is to propose an automatic classification and feature scoring method to predict intrauterine insemination (IUI) outcome and ranking the most significant features. Methods: For this purpose, a novel approach combining complex network-based feature engineering and stacked ensemble (CNFE-SE) is proposed. Three complex networks are extracted considering the patients' data similarities. The feature engineering step is performed on the complex networks. The original feature set and/or the features engineered are fed to the proposed stacked ensemble to classify and predict IUI outcome for couples per IUI treatment cycle. Our study is a retrospective study of a 5-year couples' data undergoing IUI. Data is collected from Reproductive Biomedicine Research Center, Royan Institute describing 11255 IUI treatment cycles for 8,360 couples. Our dataset includes the couples' demographic characteristics, historical data about the patients' diseases, the clinical diagnosis, the treatment plans and the prescribed drugs during the cycles, semen quality, laboratory tests and the clinical pregnancy outcome Results: Experimental results show that the proposed method outperforms the compared methods with Area under receiver operating characteristics curve (AUC) of 0.84 ± 0.01, sensitivity of 0.79 ± 0.01, specificity of 0.91 ± 0.01, and accuracy of 0.85 ± 0.01 for the prediction of IUI outcome. Conclusions: The most important predictors for predicting IUI outcome are semen parameters (sperm motility and concentration) as well as female body mass index (BMI).


2020 ◽  
Author(s):  
Sima Ranjbari ◽  
Toktam Khatibi ◽  
Ahmad Vosough Taghi Dizaj ◽  
Hesamoddin Sajadi ◽  
Mehdi Totonchi ◽  
...  

Abstract Background: Intrauterine Insemination (IUI) outcome prediction is a challenging issue which the assisted reproductive technology (ART) practitioners are dealing with. Predicting the success or failure of IUI based on the couples' features can assist the physicians to make the appropriate decision for suggesting IUI to the couples or not and/or continuing the treatment or not for them. Many previous studies have been focused on predicting the in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcome using machine learning algorithms. But, to the best of our knowledge, a few studies have been focused on predicting the outcome of IUI. The main aim of this study is to propose an automatic classification and feature scoring method to predict intrauterine insemination (IUI) outcome and ranking the most significant features. Methods: For this purpose, a novel approach combining complex network-based feature engineering and stacked ensemble (CNFE-SE) is proposed. Three complex networks are extracted considering the patients' data similarities. The feature engineering step is performed on the complex networks. The original feature set and/or the features engineered are fed to the proposed stacked ensemble to classify and predict IUI outcome for couples per IUI treatment cycle. Our study is a retrospective study of a 5-year couples' data undergoing IUI. Data is collected from Reproductive Biomedicine Research Center, Royan Institute describing 11255 IUI treatment cycles for 8,360 couples. Our dataset includes the couples demographic characteristics, historical data about the patients' diseases, the clinical diagnosis, the treatment plans and the prescribed drugs during the cycles, semen quality, laboratory tests and the clinical pregnancy outcomeResults: Experimental results show that the proposed method outperforms the compared methods with Area under receiver operating characteristics curve (AUC) of 0.84 ± 0.01, sensitivity of 0.79 ± 0.01, specificity of 0.91 ± 0.01, and accuracy of 0.85 ± 0.01 for the prediction of IUI outcome. Conclusions: The most important predictors for predicting IUI outcome are semen parameters (sperm motility and concentration) as well as female body mass index (BMI).


2019 ◽  
Vol 33 (27) ◽  
pp. 1950331
Author(s):  
Shiguo Deng ◽  
Henggang Ren ◽  
Tongfeng Weng ◽  
Changgui Gu ◽  
Huijie Yang

Evolutionary processes of many complex networks in reality are dominated by duplication and divergence. This mechanism leads to redundant structures, i.e. some nodes share most of their neighbors and some local patterns are similar, called redundancy of network. An interesting reverse problem is to discover evolutionary information from the present topological structure. We propose a quantitative measure of redundancy of network from the perspective of principal component analysis. The redundancy of a community in the empirical human metabolic network is negatively and closely related with its evolutionary age, which is consistent with that for the communities in the modeling protein–protein network. This behavior can be used to find the evolutionary difference stored in cellular networks.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Haipeng Peng ◽  
Lixiang Li ◽  
Jürgen Kurths ◽  
Shudong Li ◽  
Yixian Yang

Nowadays, the topology of complex networks is essential in various fields as engineering, biology, physics, and other scientific fields. We know in some general cases that there may be some unknown structure parameters in a complex network. In order to identify those unknown structure parameters, a topology identification method is proposed based on a chaotic ant swarm algorithm in this paper. The problem of topology identification is converted into that of parameter optimization which can be solved by a chaotic ant algorithm. The proposed method enables us to identify the topology of the synchronization network effectively. Numerical simulations are also provided to show the effectiveness and feasibility of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammad Waqar ◽  
Hassan Dawood ◽  
Hussain Dawood ◽  
Nadeem Majeed ◽  
Ameen Banjar ◽  
...  

Cardiac disease treatments are often being subjected to the acquisition and analysis of vast quantity of digital cardiac data. These data can be utilized for various beneficial purposes. These data’s utilization becomes more important when we are dealing with critical diseases like a heart attack where patient life is often at stake. Machine learning and deep learning are two famous techniques that are helping in making the raw data useful. Some of the biggest problems that arise from the usage of the aforementioned techniques are massive resource utilization, extensive data preprocessing, need for features engineering, and ensuring reliability in classification results. The proposed research work presents a cost-effective solution to predict heart attack with high accuracy and reliability. It uses a UCI dataset to predict the heart attack via various machine learning algorithms without the involvement of any feature engineering. Moreover, the given dataset has an unequal distribution of positive and negative classes which can reduce performance. The proposed work uses a synthetic minority oversampling technique (SMOTE) to handle given imbalance data. The proposed system discarded the need of feature engineering for the classification of the given dataset. This led to an efficient solution as feature engineering often proves to be a costly process. The results show that among all machine learning algorithms, SMOTE-based artificial neural network when tuned properly outperformed all other models and many existing systems. The high reliability of the proposed system ensures that it can be effectively used in the prediction of the heart attack.


Author(s):  
Lenka Skanderova ◽  
Ivan Zelinka

In this work, we investigate the dynamics of Differential Evolution (DE) using complex networks. In this pursuit, we would like to clarify the term complex network and analyze its properties briefly. This chapter presents a novel method for analysis of the dynamics of evolutionary algorithms in the form of complex networks. We discuss the analogy between individuals in populations in an arbitrary evolutionary algorithm and vertices of a complex network as well as between edges in a complex network and communication between individuals in a population. We also discuss the dynamics of the analysis.


Author(s):  
Atsushi Tanaka

In this chapter, some important matters of complex networks and their models are reviewed shortly, and then the modern diffusion of products under the information propagation using multiagent simulation is discussed. The remarkable phenomena like “Winner-Takes-All” and “Chasm” can be observed, and one product marketing strategy is also proposed.


Sign in / Sign up

Export Citation Format

Share Document