How to Inject Ictal SPECT? From Manual to Automated Injection

Author(s):  
Xavier Setoain ◽  
Francisco Campos ◽  
Antonio Donaire ◽  
Maria Mayoral ◽  
Andres Perissinotti ◽  
...  

Abstract BackgroundSuccessful surgery depends on the accurate localization of epileptogenic zone before surgery. Ictal SPECT is the only imaging modality that allows identification of the ictal onset zone by measuring the regional cerebral blood flow at the time of injection. The main limitations of ictal SPECT in epilepsy are the complex methodology of the tracer injection during a seizure. To overcome these limitations, we present the main features of the first automated injector for ictal SPECT (epijet, LemerPax; La Chapelle -sur-Erdre; France). In this study we compared traditional manual injection with automated injection for ictal SPECT in122 patients with drug-resistant epilepsy. MethodsThe study included 55 consecutive prospective patients with drug-resistant epilepsy undergoing injection with the automated injector. The control group was our retrospective database of a historic pool of 67 patients, injected manually from 2014-2016. Calculated annual exposure/radioactive dose for operators was measured. Injection time, seizure focus localization with ictal SPECT, as well as repeated hospitalizations related to fails injections were compared in these two groups of patients. ResultsThere were no differences in the average injection time with epijet (13 s) compared with the traditional manual injection (14s). The seizure focus was successfully localized with ictal SPECT with epijet in 44/55 (80%) patients and with manual injection in 46/67 (68%) patients (p=0.694). Repeated studies were required in 16/67 (23%) patients in the manual injection group compared to 4 patients (7%) in the epijet group (p=0.022). Calculated annual exposure/dose for operators of 0.39 mSv/year and administered dose error inferior to 5% are other advantages of epijet. ConclusionThe first results using epijet are promising in adjustment of the injection dose, reducing the rate of radiation exposure for patients and nurses, maintaining the same injection time and allowing high SPECT accuracy. These preliminary results support the use of an automated injection system to inject radioactive ictal SPECT doses in epilepsy units.

2018 ◽  
Vol 76 (11) ◽  
pp. 783-790 ◽  
Author(s):  
Gagandeep Singh ◽  
Josemir W. Sander

ABSTRACT Neurocysticercosis is one of the most common risk factors for epilepsy but its association with drug-resistant epilepsy remains uncertain. Conjectures of an association with drug-resistant epilepsy have been fueled by reports of an association between calcific neurocysticercosis lesions (CNL) and hippocampal sclerosis (HS) from specialized epilepsy centers in Taenia solium-endemic regions. The debate arising from these reports is whether the association is causal. Evidence for the association is not high quality but sufficiently persuasive to merit further investigation with longitudinal imaging studies in population-based samples from geographically-diverse regions. The other controversial point is the choice of a surgical approach for drug-resistant epilepsy associated with CNL-HS. Three approaches have been described: standard anteromesial temporal lobectomy, lesionectomy involving a CNL alone and lesionectomy with anteromesial temporal lobectomy (for dual pathology); reports of the latter two approaches are limited. Presurgical evaluation should consider possibilities of delineating the epileptogenic zone/s in accordance with all three approaches.


2016 ◽  
Vol 18 (5) ◽  
pp. 511-522 ◽  
Author(s):  
Alexander G. Weil ◽  
Aria Fallah ◽  
Evan C. Lewis ◽  
Sanjiv Bhatia

OBJECTIVE Insular lobe epilepsy (ILE) is an under-recognized cause of extratemporal epilepsy and explains some epilepsy surgery failures in children with drug-resistant epilepsy. The diagnosis of ILE usually requires invasive investigation with insular sampling; however, the location of the insula below the opercula and the dense middle cerebral artery vasculature renders its sampling challenging. Several techniques have been described, ranging from open direct placement of orthogonal subpial depth and strip electrodes through a craniotomy to frame-based stereotactic placement of orthogonal or oblique electrodes using stereo-electroencephalography principles. The authors describe an alternative method for sampling the insula, which involves placing insular depth electrodes along the long axis of the insula through the insular apex following dissection of the sylvian fissure in conjunction with subdural electrodes over the lateral hemispheric/opercular region. The authors report the feasibility, advantages, disadvantages, and role of this approach in investigating pediatric insular-opercular refractory epilepsy. METHODS The authors performed a retrospective analysis of all children (< 18 years old) who underwent invasive intracranial studies involving the insula between 2002 and 2015. RESULTS Eleven patients were included in the study (5 boys). The mean age at surgery was 7.6 years (range 0.5–16 years). All patients had drug-resistant epilepsy as defined by the International League Against Epilepsy and underwent comprehensive noninvasive epilepsy surgery workup. Intracranial monitoring was performed in all patients using 1 parasagittal insular electrode (1 patient had 2 electrodes) in addition to subdural grids and strips tailored to the suspected epileptogenic zone. In 10 patients, extraoperative monitoring was used; in 1 patient, intraoperative electrocorticography was used alone without extraoperative monitoring. The mean number of insular contacts was 6.8 (range 4–8), and the mean number of fronto-parieto-temporal hemispheric contacts was 61.7 (range 40–92). There were no complications related to placement of these depth electrodes. All 11 patients underwent subsequent resective surgery involving the insula. CONCLUSIONS Parasagittal transinsular apex depth electrode placement is a feasible alternative to orthogonally placed open or oblique-placed stereotactic methodologies. This method is safe and best suited for suspected unilateral cases with a possible extensive insular-opercular epileptogenic zone.


2018 ◽  
Vol 129 (6) ◽  
pp. 1221-1229 ◽  
Author(s):  
Michael B.H. Hall ◽  
Ida A. Nissen ◽  
Elisabeth C.W. van Straaten ◽  
Paul L. Furlong ◽  
Caroline Witton ◽  
...  

2020 ◽  
Author(s):  
Mariam Jaber ◽  
Jila Taherpour ◽  
Berthold Voges ◽  
Ivayla Apostolova ◽  
Thomas Sauvigny ◽  
...  

Abstract Background: The chemical microspheres 99mTc-HMPAO and 99mTc-ECD are widely used as tracers in ictal brain perfusion SPECT for identification of the seizure onset zone (SOZ) in presurgical evaluation of patients with drug-resistant epilepsy and uncertainty of SOZ localization after standard diagnostic workup. For both tracers there are theoretical arguments to favor it over the other for this task. The aim of this study was to compare the performance of ictal brain perfusion SPECT between 99mTc-HMPAO and 99mTc-ECD in a rather large patient sample.Methods: The study retrospectively included 196 patients from clinical routine in whom ictal perfusion SPECT had been performed with stabilized 99mTc-HMPAO (n = 110) or 99mTc-ECD (n = 86). Lateralization and localization of the SOZ was obtained by the consensus of two independent readers who visually inspected the SPECT images retrospectively. Results: The 99mTc-HMPAO group and the 99mTc-ECD group were well matched with respect to age, sex, age at first seizure, duration of disease, seizure frequency, history of previous brain surgery, and findings of presurgical MRI. The tracer groups differed significantly with respect to the latency of tracer injection (median latency 4 s longer in the 99mTc-HMPAO group), duration of the seizure after tracer injection (25 s shorter in the 99mTc-HMPAO group), tracer dose (70 MBq higher in the 99mTc-HMPAO group), and delay of the SPECT acquisition after tracer injection (63 min longer in the 99mTc-HMPAO group). The fraction of lateralising ictal SPECT did not differ significantly between the 99mTc-HMPAO and the 99mTc-ECD group (65.5% versus 72.1%, p = 0.355). Sensitivity of ictal perfusion SPECT (independent of the tracer) for correct localization of the SOZ in 62 patients with temporal lobe epilepsy and at least worthwhile improvement (Engel scale ≤ III) 12 months after temporal epilepsy surgery was 63%.Conclusions: This study does not provide evidence to favor 99mTc-HMPAO or 99mTc-ECD for identification of the SOZ by ictal perfusion SPECT in patients with drug resistant epilepsy.


2018 ◽  
Vol 16 ◽  
pp. 205873921880816 ◽  
Author(s):  
Mohamed M Elwan ◽  
Nirmeen A Kishk ◽  
Rasha A El-Kapany ◽  
Ibrahim E Al-Ahmer ◽  
Ahmed Elkady

There is increasing evidence that chronic inflammation affects the pathophysiology of epilepsy, especially the drug-resistant type. Drug-resistant epilepsy is a challenging condition, because of the difficulties in its management, and its unclear epileptogenesis. This study is looking at C-reactive protein (CRP) and interleukin-6 (IL-6) levels in those with drug-resistant epilepsy and the correlation of these levels with seizure frequency. Hence, 40 children with drug-resistant epilepsy were included in this study and compared with 20 healthy volunteers (as a control group). Participants were aged between 5 and 15 years. Patients were divided into two subgroups, those with daily seizures (Group A1) and those with monthly seizures (Group A2). Serum levels of CRP and IL-6 were measured in all participants. The clinical characteristics, electroencephalography, and magnetic resonance imaging (MRI) findings were then compared. CRP levels were significantly higher in Group A1, at 21.88–93.29 mg/L than both Group A2 and the control group, at 3.02–40.37 mg/L and 2.23–13.18 mg/L, P < 0.01 and P < 0.001, respectively. The IL-6 levels were also significantly higher in Group A1, at 153.60–597.80 ng/L than in both Group A2 and the control group, at 97.40–232.50 ng/L and 12.00–96.30 ng/L, P < 0.01 and P < 0.001, respectively. Significantly higher levels of CRP and IL-6 were associated with earlier age of onset ( P < 0.01), seizure frequency ( P < 0.05), and the frequency of status epilepticus ( P < 0.01). Moreover, frequent-generalized motor seizures are correlated with elevated CRP and IL-6 levels. As a result, this systemic inflammatory reaction in children may contribute to drug-resistant seizure and potentially could be used as biomarkers to be correlated with disease severity and prognosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ahmed Yassin ◽  
Khalid El-Salem ◽  
Abdel-Hameed Al-Mistarehi ◽  
Aiman Momani ◽  
Anas M. Zein Alaabdin ◽  
...  

Up to 30% of patients with epilepsy may not respond to antiepileptic drugs. Patients with drug-resistant epilepsy (DRE) should undergo evaluation for seizure onset zone (SOZ) localization to consider surgical treatment. Cases of drug-resistant nonlesional extratemporal lobe epilepsy (ETLE) pose the biggest challenge in localizing the SOZ and require multiple noninvasive diagnostic investigations before planning the intracranial monitoring (ICM) or direct resection. Ictal Single Photon Emission Computed Tomography (i-SPECT) is a unique functional diagnostic tool that assesses the SOZ using the localized hyperperfusion that occurs early in the seizure. Subtraction ictal SPECT coregistered to MRI (SISCOM), statistical ictal SPECT coregistered to MRI (STATISCOM), and PET interictal subtracted ictal SPECT coregistered with MRI (PISCOM) are innovative SPECT methods for the determination of the SOZ. This article comprehensively reviews SPECT and sheds light on its vital role in the presurgical evaluation of the nonlesional extratemporal DRE.


2021 ◽  
Vol 8 ◽  
Author(s):  
Daisuke Hasegawa ◽  
Rikako Asada ◽  
Yuji Hamamoto ◽  
Yoshihiko Yu ◽  
Takayuki Kuwabara ◽  
...  

Epilepsy surgery is a common therapeutic option in humans with drug-resistant epilepsy. However, there are few reports of intracranial epilepsy surgery for naturally occurring epilepsy in veterinary medicine. A 12-year-old neutered female domestic shorthair cat with presumed congenital cortical abnormalities (atrophy) in the right temporo-occipital cortex and hippocampus had been affected with epilepsy from 3 months of age. In addition to recurrent epileptic seizures, the cat exhibited cognitive dysfunction, bilateral blindness, and right forebrain signs. Seizures had been partially controlled (approximately 0.3–0.7 seizures per month) by phenobarbital, zonisamide, diazepam, and gabapentin until 10 years of age; however, they gradually became uncontrollable (approximately 2–3 seizures per month). In order to plan epilepsy surgery, presurgical evaluations including advanced structural magnetic resonance imaging and long-term intracranial video-electroencephalography monitoring were conducted to identify the epileptogenic zone. The epileptogenic zone was suspected in the right atrophied temporo-occipital cortex and hippocampus. Two-step surgery was planned, and a focal cortical resection of that area was performed initially. After the first surgery, seizures were not observed for 2 months, but they then recurred. The second surgery was performed to remove the right atrophic hippocampus and extended area of the right cortex, which showed spikes on intraoperative electrocorticography. After the second operation, although epileptogenic spikes remained in the contralateral occipital lobe, which was suspected as the second epileptogenic focus, seizure frequency decreased to &lt;0.3 seizure per month under treatment with antiseizure drugs at 1.5 years after surgery. There were no apparent complications associated with either operation, although the original neurological signs were unchanged. This is the first exploratory study of intracranial epilepsy surgery for naturally occurring epilepsy, with modern electroclinical and imaging evidence, in veterinary medicine. Along with the spread of advanced diagnostic modalities and neurosurgical devices in veterinary medicine, epilepsy surgery may be an alternative treatment option for drug-resistant epilepsy in cats.


2022 ◽  
Author(s):  
Haiteng Jiang ◽  
Vasileios Kokkinos ◽  
Shuai Ye ◽  
Alexandra Urban ◽  
Anto Bagic ◽  
...  

Stereotactic-electroencephalography (SEEG) is a common neurosurgical method to localize epileptogenic zone in drug resistant epilepsy patients and inform treatment recommendations. In the current clinical practice, localization of epileptogenic zone typically requires prolonged recordings to capture seizure, which may take days to weeks. Although epilepsy surgery has been proven to be effective in general, the percentage of unsatisfactory seizure outcomes is still concerning. We developed a method to identify the seizure onset zone (SOZ) and predict seizure outcome using short-time resting-state SEEG data. In a cohort of 43 drug resistant epilepsy patients, we estimated the information flow via directional connectivity and inferred the excitation-inhibition ratio from the 1/f power slope. We hypothesized that the antagonism of information flow at multiple frequencies between SOZ and non-SOZ underlying the relatively stable epilepsy resting state could be related to the disrupted excitation-inhibition balance. We found higher excitability in non-SOZ regions compared to the SOZ, with dominant information flow from non-SOZ to SOZ regions, probably reflecting inhibitory input from non-SOZ to prevent seizure initiation. Greater differences in information flow between SOZ and non-SOZ regions were associated with favorable seizure outcome. By integrating a balanced random forest model with resting-state connectivity, our method localized the SOZ with an accuracy of 85% and predicted the seizure outcome with an accuracy of 77% using clinically determined SOZ. Overall, our study suggests that brief resting-state SEEG data can significantly facilitate the identification of SOZ and may eventually predict seizure outcomes without requiring long-term ictal recordings.


2018 ◽  
Vol 9 ◽  
Author(s):  
Ida A. Nissen ◽  
Cornelis J. Stam ◽  
Elisabeth C. W. van Straaten ◽  
Viktor Wottschel ◽  
Jaap C. Reijneveld ◽  
...  

Author(s):  
Louis Maillard ◽  
Georgia Ramantani

Polymicrogyria (PMG) is one of the most common malformations of cortical development (MCDs), with epilepsy affecting most patients. PMG-related drug-resistant epilepsy patients can be considered for surgery in well-selected cases. In this context, a comprehensive presurgical evaluation, often including stereo electroencephalography, is warranted to accurately delineate the epileptogenic zone. The heterogeneity of intrinsic epileptogenicity in the PMG, together with the additional or predominant involvement of remote cortical areas, calls for a different strategy in PMG compared with other MCDs, one that is not predominantly MRI- but rather SEEG-oriented. Favourable results in terms of seizure freedom and antiepileptic drug cessation are feasible in a large proportion of patients with unilateral PMG. PMG extent should not exclude the possibility of epilepsy surgery. On the other hand, patients with hemispheric PMG can be excellent hemispherotomy candidates, particularly in the presence of contralateral hemiparesis. Recent findings support early consideration of surgery in PMG-related drug-resistant epilepsy.


Sign in / Sign up

Export Citation Format

Share Document