Freeze–thaw combined with activated carbon improves electrochemical dewaterability of sludge: Analysis of sludge floc structure and dewatering mechanism
Abstract Freeze–thaw (F/T) and electrochemistry are environment-friendly and efficient sludge treatment technologies. In this study, F/T and electrochemistry were combined in the pretreatment of sludge dewatering in the laboratory, and activated carbon (AC) was added to improve the electrochemical dewatering performance of sludge. During the experiment, the effect of F/T on the floc structure was analyzed by a laser particle analyzer and scanning electron microscope. F/T treatment not only improved the dewatering performance of sludge, but also promoted the aggregation of sludge flocs into larger particles. The median diameter (D50) increased from 45.27 µm to 128.94 µm. Then, the intracellular polymer of large-particle sludge was analyzed by three-dimensional excitation–emission matrix (3D-EEM). The tightly bound extracellular polymeric substances (TB-EPS) still contained a large amount of protein substances, which hindered the improvement of sludge dewatering performance. AC was added to the thawed sludge solution before electrochemical treatment (EP). The conductivity of AC enhanced the effect of EP, thereby cracking the sludge flocs. Thus, the light intensity of TB-EPS in the 3D-EEM fluorescence spectroscopy was decreased, and the D50 was also reduced to 105.3 µm. The final specific resistance of filtration and water content were reduced by 96.39% and 32.17%, respectively. Element analysis of the sludge cake after dehydration showed that the addition of AC significantly improved the combustion efficiency of the sludge cake. Moreover, preliminary economic analysis showed that the cost of this research was low, which indicated the potential application value of combined treatment.