Joint Destructive Role of Mast Cells in Rheumatoid Arthritis

2020 ◽  
Author(s):  
Kyoung-Woon Kim ◽  
Bo-Mi Kim ◽  
Ji-Yeon Won ◽  
Hong-Ki Min ◽  
Kyung-Ann Lee ◽  
...  

Abstract Background: We aimed to define the inflammatory and tissue-destructive roles of mast cells in rheumatoid arthritis (RA). Methods: Serum and synovial fluid (SF) concentration levels of tryptase, chymase, and histamine were quantified using ELISA. After activating mast cells using IL-33, the production of TNF-a, IL-1b, IL-6, IL-17, RANKL, and MMPs was determined using real-time PCR and ELISA. Osteoclastogenesis was assessed in CD14+ monocytes from peripheral blood and SF, which were cultured with IL-33-activated mast cells, by counting TRAP-positive multinucleated cells. Results: The concentration levels of serum tryptase, chymase, and histamine and SF histamine were higher in patients with RA than in controls. FceR1 and c-kit-positive mast cells were higher in RA synovium than in osteoarthritic (OA) synovium. Stimulation of mast cells by IL-33 increased the number of trypatse+chymase- and tryptase+chymase+ mast cells. IL-33 stimulation also increased the gene expression levels of TNF-a, IL-1b, IL-6, IL-17, RANKL, and MMP-9 in mast cells. Furthermore, IL-33 stimulated human CD14+ monocytes to differentiate into TRAP+ multinucleated osteoclasts. When CD14+ monocytes were co-cultured with mast cells, osteoclast differentiation was increased. Additionally, IL-33-activated mast cells stimulated osteoclast differentiation. The inhibition of intercellular contact between mast cells and monocytes using inserts reduced osteoclast differentiation. Conclusions: Mast cells and their mediators such as tryptase, chymase, and histamine were increased in RA synovial tissues and fluid. Mast cells stimulated osteoclast differentiation in monocytes. The inhibition of mast cells could be a new therapeutic option for reducing joint destruction in RA.

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Kyoung-Woon Kim ◽  
Bo-Mi Kim ◽  
Ji-Yeon Won ◽  
Hong-Ki Min ◽  
Kyung-Ann Lee ◽  
...  

Abstract Background In the pathogenesis of rheumatoid arthritis (RA), the role of mast cells has not been revealed clearly. We aimed to define the inflammatory and tissue-destructive roles of mast cells in rheumatoid arthritis (RA). Methods Serum and synovial fluid (SF) concentration levels of tryptase, chymase, and histamine were quantified using ELISA. After activating mast cells using IL-33, the production of TNF-α, IL-1β, IL-6, IL-17, RANKL, and MMPs was determined using real-time PCR and ELISA. Osteoclastogenesis was assessed in CD14+ monocytes from peripheral blood and SF, which were cultured with IL-33-activated mast cells, by counting TRAP-positive multinucleated cells. Results The concentration levels of serum tryptase, chymase, and histamine and SF histamine were higher in patients with RA than in controls. FcεR1 and c-kit-positive mast cells were higher in RA synovium than in osteoarthritic (OA) synovium. Stimulation of mast cells by IL-33 increased the number of trypatse+chymase− and tryptase+chymase+ mast cells. IL-33 stimulation also increased the gene expression levels of TNF-α, IL-1β, IL-6, IL-17, RANKL, and MMP-9 in mast cells. Furthermore, IL-33 stimulated human CD14+ monocytes to differentiate into TRAP+ multinucleated osteoclasts. When CD14+ monocytes were co-cultured with mast cells, osteoclast differentiation was increased. Additionally, IL-33-activated mast cells stimulated osteoclast differentiation. The inhibition of intercellular contact between mast cells and monocytes using inserts reduced osteoclast differentiation. Conclusions IL-33 increased inflammatory and tissue-destructive cytokines by activation of mast cells. Mast cells stimulated osteoclast differentiation in monocytes. Mast cells could stimulate osteoclastogenesis indirectly through production of tissue-destructive cytokines and directly through stimulation of osteoclast precursors.


2021 ◽  
Author(s):  
Kyoung-Woon Kim ◽  
Bo-Mi Kim ◽  
Ji-Yeon Won ◽  
Hong-Ki Min ◽  
Kyung-Ann Lee ◽  
...  

Abstract Background: We aimed to define the inflammatory and tissue-destructive roles of mast cells in rheumatoid arthritis (RA). Methods: Serum and synovial fluid (SF) concentration levels of tryptase, chymase, and histamine were quantified using ELISA. After activating mast cells using IL-33, the production of TNF-a, IL-1b, IL-6, IL-17, RANKL, and MMPs was determined using real-time PCR and ELISA. Osteoclastogenesis was assessed in CD14+ monocytes from peripheral blood and SF, which were cultured with IL-33-activated mast cells, by counting TRAP-positive multinucleated cells. Results: The concentration levels of serum tryptase, chymase, and histamine and SF histamine were higher in patients with RA than in controls. FceR1 and c-kit-positive mast cells were higher in RA synovium than in osteoarthritic (OA) synovium. Stimulation of mast cells by IL-33 increased the number of trypatse+chymase- and tryptase+chymase+ mast cells. IL-33 stimulation also increased the gene expression levels of TNF-a, IL-1b, IL-6, IL-17, RANKL, and MMP-9 in mast cells. Furthermore, IL-33 stimulated human CD14+ monocytes to differentiate into TRAP+ multinucleated osteoclasts. When CD14+ monocytes were co-cultured with mast cells, osteoclast differentiation was increased. Additionally, IL-33-activated mast cells stimulated osteoclast differentiation. The inhibition of intercellular contact between mast cells and monocytes using inserts reduced osteoclast differentiation. Conclusions: IL-33 increased inflammatory and tissue destructive cytokines by activation of mast cells. Mast cells stimulated osteoclast differentiation in monocytes. Mast cells could stimulate osteoclastogenesis indirectly through production of tissue destructive cytokines and directly through stimulation of osteoclast precursors.


2019 ◽  
Vol 78 (12) ◽  
pp. 1632-1641 ◽  
Author(s):  
Guanhua Song ◽  
Tingting Feng ◽  
Ru Zhao ◽  
Qiqi Lu ◽  
Yutao Diao ◽  
...  

ObjectiveThe aim of this study was to investigate the role of CD109 in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) and to evaluate its potential as a therapeutic target.MethodsCD109 expression was examined in synovial tissues and FLSs from RA patients and collagen-induced arthritis (CIA) model mice. CD109-deficient mice were developed to evaluate the severity of CIA. Small interfering RNAs and a neutralising antibody against CD109 (anti-CD109) were designed for functional or treatment studies in RA FLSs and CIA.ResultsCD109 was found to be abundantly expressed in the synovial tissues from RA patients and CIA mice. CD109 expression in RA FLSs was upregulated by inflammatory stimuli, such as interleukin-1β and tumour necrosis factor-α. Silencing of CD109 or anti-CD109 treatment reduced proinflammatory factor production, cell migration, invasion, chemoattractive potential and osteoclast differentiation, thereby reducing the deleterious inflammatory response of RA FLSs in vitro. Mice lacking CD109 were protected against arthritis in the CIA model. Anti-CD109 treatment prevented the onset and ameliorated the severity of CIA lesions.ConclusionOur study uncovers an antiarthritic role for CD109 and suggests that CD109 inhibition might serve as a promising novel therapeutic strategy for RA.


2018 ◽  
Vol 86 (September) ◽  
pp. 3341-3348
Author(s):  
DALIA B. EL-BOHOTY, M.Sc.; DOAA S. AL-ASHKAR, M.D. ◽  
MAALY M. MABROUK, M.D.; HALA M. NAGY, M.D.

2005 ◽  
Vol 11 (5) ◽  
pp. 563-568 ◽  
Author(s):  
Ingmar Meinecke ◽  
Edita Rutkauskaite ◽  
Steffen Gay ◽  
Thomas Pap

2010 ◽  
Vol 67 (4) ◽  
pp. 286-290 ◽  
Author(s):  
Aleksandra Tomic-Lucic ◽  
Suzana Pantovic ◽  
Gvozden Rosic ◽  
Zdravko Obradovic ◽  
Mirko Rosic

Background/Aim. Many arguments prove the pathophysiologic role of histamine in the process of remodeling and joint destruction in rheumatoid arthritis. The aim of our study was to find out if there was a relation between histamine concentration in synovial fluid and blood with clinical expression of disease activity. Methods. Histamine concentration in synovial fluid and blood was determinated in 19 patients with rheumatoid arthritis. Histamine concentration measurement was based on the Shore's fluorometric method. Histamine index (HI) was evaluated as a ratio between histamine concentration in synovial fluid and blood. Disease activity score, DAS 28 (3), with three variables (erythrocyte sedimentation rate, the number of swelled joints and the number of tender joints) was also evaluated. Results. Our results showed that there was no significant difference in concentration of histamine in synovial fluid and blood related to disease activity. However, there was a significant difference in the histamine index which was increased proportionally with disease activity. Conclusion. Our study indicates that histamine index could be useful in estimation of rheumatoid arthritis activity.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4968
Author(s):  
Samuel García-Arellano ◽  
Luis Alexis Hernández-Palma ◽  
Sergio Cerpa-Cruz ◽  
Gabriela Athziri Sánchez-Zuno ◽  
Melva Guadalupe Herrera-Godina ◽  
...  

Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease with complex pathogenesis associated with cytokine dysregulation. Macrophage migration inhibitory factor (MIF) plays a role in systemic inflammation and joint destruction in RA and could be associated with the secretion of other immune-modulatory cytokines such as IL-25, IL-31, and IL-33. For the above, our main aim was to evaluate the IL-25, IL-31, and IL-33 secretion from recombinant human MIF (rhMIF)-stimulated peripheral blood mononuclear cells (PBMC) of RA patients. The rhMIF and lipopolysaccharide (LPS) plus rhMIF stimuli promote the secretion of IL-25, IL-31, and IL-33 (p < 0.05) from PBMC of RA patients. The study groups, the different stimuli, and the interaction between both showed a statistically significant effect on the secretion of IL-25 (p < 0.05) and IL-31 (p < 0.01). The study of the effect of the RA patient treatments and their interaction with the effect of stimuli did not show an interaction between them. In conclusion, our study generates new evidence for the role of MIF in the secretion of IL-25, IL-31, and IL-33 and its immunomodulatory effect on RA.


2018 ◽  
Vol 77 (9) ◽  
pp. 1345-1353 ◽  
Author(s):  
Azita Sohrabian ◽  
Linda Mathsson-Alm ◽  
Monika Hansson ◽  
Ann Knight ◽  
Jörgen Lysholm ◽  
...  

IntroductionIndividual patients with rheumatoid arthritis (RA) show divergent specific anti-citrullinated protein/peptide antibodies (ACPA) patterns, but hitherto no individual ACPA specificity has consistently been linked to RA pathogenesis. ACPA are also implicated in immune complexes (IC)-associated joint pathology, but until now, there has been no method to investigate the role of individual ACPA in RA IC formation and IC-associated pathogenesis.MethodsWe have developed a new technique based on IC binding to C1q-coated magnetic beads to purify and solubilise circulating IC in sera and synovial fluids (SF) from 77 patients with RA. This was combined with measurement of 19 individual ACPA in serum, SF and in the IC fractions from serum and SF. We investigated whether occurrence of individual ACPA as well as number of ACPA in these compartments was related to clinical and laboratory measures of disease activity and inflammation.ResultsThe majority of individual ACPA reactivities were enriched in SF as compared with in serum, and levels of ACPA in IC were regulated independently of levels in serum and SF. No individual ACPA reactivity in any compartment showed a dominating association to clinical and laboratory measures of disease activity and severity. Instead, the number of individual ACPA reactivities in the IC fraction from SF associated with a number of markers of joint destruction and inflammation.ConclusionsOur data highlight the polyclonality of ACPA in joint IC and the possibility that a broad ACPA repertoire in synovial fluid IC might drive the local inflammatory and matrix-degrading processes in joints, in analogy with antibody-induced rodent arthritis models.


2000 ◽  
Vol 84 (5) ◽  
pp. 589-595 ◽  
Author(s):  
William B. Grant

Rheumatoid arthritis (RA) is characterized by inflammation of the synovial tissues in the joints. A number of papers related to dietary components that are associated with this inflammation are reviewed. In addition, the ecological approach is used to study the links between diet and RA. Multi-country data for prevalence of RA for females from eight and fifteen countries were compared statistically with components of national dietary supply. Fat from meat and offal for the period 2 years before the prevalence data was found to have the highest statistical association with the prevalence of RA (r2 0·877, P<0·001 for eight countries). The statistical correlations for meat and offal were almost as high as those for their fat. Similar correlations were found for temporal changes in indices of effects of RA in several European countries between 1968 and 1978 as more meat was added to the national diets, although the correlations were higher for meat than for fat. It is hypothesized that meat and offal may be a major factor contributing to the inflammation in RA. In the present short review, the author examines some of the data that associate meat consumption with RA and the possible factors, e.g. fat, Fe and nitrite, which may contribute to the inflammation.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Jimeng Xue ◽  
Liling Xu ◽  
Huaqun Zhu ◽  
Mingxin Bai ◽  
Xin Li ◽  
...  

Abstract Background Monocytes as precursors of osteoclasts in rheumatoid arthritis (RA) are well demonstrated, while monocyte subsets in osteoclast formation are still controversial. Tyro3 tyrosine kinase (Tyro3TK) is a member of the receptor tyrosine kinase family involved in immune homeostasis, the role of which in osteoclast differentiation was reported recently. This study aimed to compare the osteoclastic capacity of CD14+CD16+ and CD14+CD16− monocytes in RA and determine the potential involvement of Tyro3TK in their osteoclastogenesis. Methods Osteoclasts were induced from CD14+CD16+ and CD14+CD16− monocyte subsets isolated from healthy control (HC) and RA patients in vitro and evaluated by tartrate-resistant acid phosphatase (TRAP) staining. Then, the expression of Tyro3TK on CD14+CD16+ and CD14+CD16− monocyte subsets in the peripheral blood of RA, osteoarthritis (OA) patients, and HC were evaluated by flow cytometry and qPCR, and their correlation with RA patient clinical and immunological features was analyzed. The role of Tyro3TK in CD14+CD16− monocyte-mediated osteoclastogenesis was further investigated by osteoclast differentiation assay with Tyro3TK blockade. Results The results revealed that CD14+CD16− monocytes were the primary source of osteoclasts. Compared with HC and OA patients, the expression of Tyro3TK on CD14+CD16− monocytes in RA patients was significantly upregulated and positively correlated with the disease manifestations, such as IgM level, tender joint count, and the disease activity score. Moreover, anti-Tyro3TK antibody could inhibit Gas6-mediated osteoclast differentiation from CD14+CD16− monocytes in a dose-dependent manner. Conclusions These findings indicate that elevated Tyro3TK on CD14+CD16− monocytes serves as a critical signal for osteoclast differentiation in RA.


Sign in / Sign up

Export Citation Format

Share Document