scholarly journals Complete plastid genome of Angelica, Ostericum and related species (Apiaceae): genomic evolution and phylogenetic implications

Author(s):  
Qiu-Ping Jiang ◽  
Megan Price ◽  
Xian-Lin Guo ◽  
Wei Gou ◽  
Song-Dong Zhou ◽  
...  

Abstract Background Subtribe Angelicinae is a large and taxonomically complex group of Apiaceae, encompassing Angelica, Archangelica, Coelopleurum, Conioselinum, Czernaevia, Glehnia, Levisticum and Ostericum that are distributed in the Northern Hemisphere, and whether this taxa is natural is debatable, especially between Angelica and Ostericum. To determine genommic evolution and phylogenetic relationships between Angelica, Ostericum, and related species, we newly assembled the complete plastid genome sequences of eight subtribe Angelicinae species and Melanosciadium pimpinelloideum using next-generation sequencing technology. Results The nine plastid genomes we sequenced were conserved, and their size ranged from 146765 bp to 164329 bp, showing the typical quadripartite circular structure with an overall GC content of 37.5–37.8%. IR boundary analyses showed that the genes in the LSC region transfer into the IR regions and the SSC region was relatively stable. Codon usage patterns were similar among these species and we identified 66–86 SSRs, with the most abundant SSR being mononucleotide. The Pi analyses showed that petA-psbJ(0.02778), atpI-atpH(0.17333) and petA-psbJ(0.04726) intergenic regions had the highest Pi values in Angelica, Ostericum, and ten species, respectively. Conclusions Ostericum exhibited significant differences in size of genomes, content of genes and tRNAs, GC content, some type of SSRs, and IR boundaries to Angelica, and phylogenetic analyses found the relatedness between Angelica and Ostericum is more distant in protein-coding genes of the plastid genomes trees and nrITS trees.

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1523
Author(s):  
Wei Gou ◽  
Sheng-Bin Jia ◽  
Megan Price ◽  
Xian-Lin Guo ◽  
Song-Dong Zhou ◽  
...  

Hansenia Turcz., Haplosphaera Hand.-Mazz. and Sinodielsia H.Wolff are three Apiaceae genera endemic to the Hengduan Mountains and the Himalayas, which usually inhabit elevations greater than 2000 m. The phylogenetic relationships between and within the genera were uncertain, especially the placement of Hap. himalayensis and S. microloba. Therefore, we aimed to conduct comparative (simple sequence repeat (SSR) structure, codon usage bias, nucleotide diversity (Pi) and inverted repeat (IR) boundaries) and phylogenetic analyses of Hansenia, Haplosphaera and Sinodielsia (also compared with Chamaesium and Bupleurum) to reduce uncertainties in intergeneric and interspecific relationships. We newly assembled eight plastid genomes from Hansenia, Haplosphaera and Sinodielsia species, and analyzed them with two plastid genomes from GenBank of Hap. phaea,S. yunnanensis. Phylogenetic analyses used these ten genomes and another 22 plastid genome sequences of Apiaceae. We found that the newly assembled eight genomes ranged from 155,435 bp to 157,797 bp in length and all had a typical quadripartite structure. Fifty-five to 75 SSRs were found in Hansenia, Haplosphaera and Sinodielsia species, and the most abundant SSR was mononucleotide, which accounted for 58.47% of Hansenia, 60.21% of Haplosphaera and 48.01% of Sinodielsia. There was no evident divergence of codon usage frequency between the three genera, where codons ranged from 21,134 to 21,254. The Pi analysis showed that trnE(UUC)-trnT(GGU), trnH(GUG)-psbA and trnE(UUC)-trnT(GGU) spacer regions had the highest Pi values in the plastid genomes of Hansenia (0.01889), Haplosphaera (0.04333) and Sinodielsia (0.01222), respectively. The ndhG-ndhI spacer regions were found in all three genera to have higher diversity values (Pi values: 0.01028–0.2), and thus may provide potential DNA barcodes in phylogenetic analysis. IR boundary analysis showed that the length of rps19 and ycf1 genes entering IRs were usually stable in the same genus. Our phylogenetic tree demonstrated that Hap. himalayensis is sister to Han. weberbaueriana; meanwhile, Haplosphaera and Hansenia are nested together in the East Asia clade, and S. microloba is nested within individuals of S. yunnanensis in the Acronema clade. This study will enrich the complete plastid genome dataset of the Apiaceae genera and has provided a new insight into phylogeny reconstruction using complete plastid genomes of Hansenia, Haplosphaera and Sinodielsia.


2018 ◽  
Vol 123 (5) ◽  
pp. 857-865 ◽  
Author(s):  
Jacqueline Heckenhauer ◽  
Ovidiu Paun ◽  
Mark W Chase ◽  
Peter S Ashton ◽  
A S Kamariah ◽  
...  

Abstract Background and Aims Phylogenetic relationships within tribe Shoreeae, containing the main elements of tropical forests in Southeast Asia, present a long-standing problem in the systematics of Dipterocarpaceae. Sequencing whole plastomes using next-generation sequencing- (NGS) based genome skimming is increasingly employed for investigating phylogenetic relationships of plants. Here, the usefulness of complete plastid genome sequences in resolving phylogenetic relationships within Shoreeae is evaluated. Methods A pipeline to obtain alignments of whole plastid genome sequences across individuals with different amounts of available data is presented. In total, 48 individuals, representing 37 species and four genera of the ecologically and economically important tribe Shoreeae sensu Ashton, were investigated. Phylogenetic trees were reconstructed using maximum parsimony, maximum likelihood and Bayesian inference. Key Results Here, the first fully sequenced plastid genomes for the tribe Shoreeae are presented. Their size, GC content and gene order are comparable with those of other members of Malvales. Phylogenomic analyses demonstrate that whole plastid genomes are useful for inferring phylogenetic relationships among genera and groups of Shorea (Shoreeae) but fail to provide well-supported phylogenetic relationships among some of the most closely related species. Discordance in placement of Parashorea was observed between phylogenetic trees obtained from plastome analyses and those obtained from nuclear single nucleotide polymorphism (SNP) data sets identified in restriction-site associated sequencing (RADseq). Conclusions Phylogenomic analyses of the entire plastid genomes are useful for inferring phylogenetic relationships at lower taxonomic levels, but are not sufficient for detailed phylogenetic reconstructions of closely related species groups in Shoreeae. Discordance in placement of Parashorea was further investigated for evidence of ancient hybridization.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7480 ◽  
Author(s):  
Qi Chen ◽  
Xiaobo Wu ◽  
Dequan Zhang

Fritillaria cirrhosa D. Don, whose bulb is used in a well-known traditional Chinese medicine to relieve cough and eliminate phlegm, is one of the most important medicinal plants of Fritillaria L. The species is widely distributed among the alpine regions in southwestern China and possesses complex morphological variations in different distributions. A series of newly related species were reported, based on obscure morphological differences. As a result, F. cirrhosa and its closely related species constitute a taxonomically complex group. However, it is difficult to accurately identify these species and reveal their phylogenetic relationships using traditional taxonomy. Molecular markers and gene fragments have been adopted but they are not able to afford sufficient phylogenetic resolution in the genus. Here, we report the complete chloroplast genome sequences of F. cirrhosa and its closely related species using next generation sequencing (NGS) technology. Eight plastid genomes ranged from 151,058 bp to 152,064 bp in length and consisted of 115 genes. Gene content, gene order, GC content, and IR/SC boundary structures were highly similar among these genomes. SSRs and five large repeat sequences were identified and the total number of them ranged from 73 to 79 and 63 to 75, respectively. Six highly divergent regions were successfully identified that could be used as potential genetic markers of Fritillaria. Phylogenetic analyses revealed that eight Fritillaria species were clustered into three clades with strong supports and F. cirrhosa was closely related to F. przewalskii and F. sinica. Overall, this study indicated that the complete chloroplast genome sequence was an efficient tool for identifying species in taxonomically complex groups and exploring their phylogenetic relationships.


2021 ◽  
Author(s):  
Mahtab Moghaddam ◽  
Atsushi Ohta ◽  
Motoki Shimizu ◽  
Ryohei Terauchi ◽  
Shahrokh Kazempour-Osaloo

Abstract Plastid genome sequences provide valuable markers for surveying the evolutionary relationships and population genetics of plant species. In the present study, the complete plastid genome of Onobrychis gaubae, endemic to Iran, was sequenced using Illumina paired-end sequencing and was compared with previously known genomes of the IRLC species of legumes. The O. gaubae plastid genome was 123,645 bp in length and included a large single-copy (LSC) region of 81,034 bp, a small single-copy (SSC) region of 13,788 bp and one copy of the inverted repeat (IRb) of 28,823 bp. The genome encoded 110 genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes and possessed 89 simple sequence repeats (SSRs) and 28 repeated structures with the highest proportion in the LSC. Comparative analysis of the chloroplast genomes across IRLC revealed three hotspot genes (ycf1, ycf2, clpP) which could be used as molecular markers for resolving phylogenetic relationships and species identification. IRLC plastid genomes also showed multiple gene losses and inversions. Phylogenetic analyses revealed that O. gaubae is closely related to Hedysarum. The complete O. gaubae genome is a valuable resource for investigating evolution of Onobrychis species and can be used to identify related species.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Caixiang Wang ◽  
Juanjuan Liu ◽  
Yue Su ◽  
Meili Li ◽  
Xiaoyu Xie ◽  
...  

Sonchus brachyotus DC. possesses both edible and medicinal properties and is widely distributed throughout China. In this study, the complete cp genome of S. brachyotus was sequenced and assembled. The total length of the complete S. brachyotus cp genome was 151,977 bp, including an LSC region of 84,553 bp, SSC region of 18,138 bp, and IR region of 24,643 bp. Sequence analyses revealed that the cp genome encoded 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The GC content was 37.6%. One hundred mononucleotide microsatellites, 4 dinucleotide microsatellites, 67 trinucleotide microsatellites, 4 tetranucleotide microsatellites, and 1 long repeat were identified. The SSR frequency of the LSC region was significantly greater than that of the IR and SSC regions. In total, 175 SSRs and highly variable regions were recognized as potential cp markers. By analyzing the IR/LSC and IR/SSC boundaries, structural differences between S. brachyotus and 6 other species were detected. According to phylogenetic analyses, S. brachyotus was most closely related to S. arvensis and S. oleraceus. Overall, this study provides complete cp genome resources for S. brachyotus that will be beneficial for identifying potential molecular markers and evolutionary patterns of S. brachyotus and its closely related species.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 744
Author(s):  
Yunyan Zhang ◽  
Yongjing Tian ◽  
David Y. P. Tng ◽  
Jingbo Zhou ◽  
Yuntian Zhang ◽  
...  

Litsea Lam. is an ecological and economic important genus of the “core Lauraceae” group in the Lauraceae. The few studies to date on the comparative chloroplast genomics and phylogenomics of Litsea have been conducted as part of other studies on the Lauraceae. Here, we sequenced the whole chloroplast genome sequence of Litsea auriculata, an endangered tree endemic to eastern China, and compared this with previously published chloroplast genome sequences of 11 other Litsea species. The chloroplast genomes of the 12 Litsea species ranged from 152,132 (L. szemaois) to 154,011 bp (L. garrettii) and exhibited a typical quadripartite structure with conserved genome arrangement and content, with length variations in the inverted repeat regions (IRs). No codon usage preferences were detected within the 30 codons used in the chloroplast genomes, indicating a conserved evolution model for the genus. Ten intergenic spacers (psbE–petL, trnH–psbA, petA–psbJ, ndhF–rpl32, ycf4–cemA, rpl32–trnL, ndhG–ndhI, psbC–trnS, trnE–trnT, and psbM–trnD) and five protein coding genes (ndhD, matK, ccsA, ycf1, and ndhF) were identified as divergence hotspot regions and DNA barcodes of Litsea species. In total, 876 chloroplast microsatellites were located within the 12 chloroplast genomes. Phylogenetic analyses conducted using the 51 additional complete chloroplast genomes of “core Lauraceae” species demonstrated that the 12 Litsea species grouped into four sub-clades within the Laurus-Neolitsea clade, and that Litsea is polyphyletic and closely related to the genera Lindera and Laurus. Our phylogeny strongly supported the monophyly of the following three clades (Laurus–Neolitsea, Cinnamomum–Ocotea, and Machilus–Persea) among the above investigated “core Lauraceae” species. Overall, our study highlighted the taxonomic utility of chloroplast genomes in Litsea, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of L. auriculata and other Litsea species.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1185
Author(s):  
Wenqian Wang ◽  
Huan Zhang ◽  
Jérôme Constant ◽  
Charles R. Bartlett ◽  
Daozheng Qin

The complete mitogenomes of nine fulgorid species were sequenced and annotated to explore their mitogenome diversity and the phylogenetics of Fulgoridae. All species are from China and belong to five genera: Dichoptera Spinola, 1839 (Dichoptera sp.); Neoalcathous Wang and Huang, 1989 (Neoalcathous huangshanana Wang and Huang, 1989); Limois Stål, 1863 (Limois sp.); Penthicodes Blanchard, 1840 (Penthicodes atomaria (Weber, 1801), Penthicodes caja (Walker, 1851), Penthicodes variegata (Guérin-Méneville, 1829)); Pyrops Spinola, 1839 (Pyrops clavatus (Westwood, 1839), Pyrops lathburii (Kirby, 1818), Pyrops spinolae (Westwood, 1842)). The nine mitogenomes were 15,803 to 16,510 bp in length with 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (A + T-rich region). Combined with previously reported fulgorid mitogenomes, all PCGs initiate with either the standard start codon of ATN or the nonstandard GTG. The TAA codon was used for termination more often than the TAG codon and the incomplete T codon. The nad1 and nad4 genes varied in length within the same genus. A high percentage of F residues were found in the nad4 and nad5 genes of all fulgorid mitogenomes. The DHU stem of trnV was absent in the mitogenomes of all fulgorids sequenced except Dichoptera sp. Moreover, in most fulgorid mitogenomes, the trnL2, trnR, and trnT genes had an unpaired base in the aminoacyl stem and trnS1 had an unpaired base in the anticodon stem. The similar tandem repeat regions of the control region were found in the same genus. Phylogenetic analyses were conducted based on 13 PCGs and two rRNA genes from 53 species of Fulgoroidea and seven outgroups. The Bayesian inference and maximum likelihood trees had a similar topological structure. The major results show that Fulgoroidea was divided into two groups: Delphacidae and ((Achilidae + (Lophopidae + (Issidae + (Flatidae + Ricaniidae)))) + Fulgoridae). Furthermore, the monophyly of Fulgoridae was robustly supported, and Aphaeninae was divided into Aphaenini and Pyropsini, which includes Neoalcathous, Pyrops, Datua Schmidt, 1911, and Saiva Distant, 1906. The genus Limois is recovered in the Aphaeninae, and the Limoisini needs further confirmation; Dichoptera sp. was the earliest branch in the Fulgoridae.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 232
Author(s):  
Nan Zhou ◽  
Yanling Dong ◽  
Pingping Qiao ◽  
Zhaofu Yang

To understand mitogenome characteristics and reveal phylogenetic relationships of the genus Ostrinia, including several notorious pests of great importance for crops, we sequenced the complete mitogenomes of four species: Ostrinia furnacalis (Guenée, 1854), Ostrinia nubilalis (Hübner, 1796), Ostrinia scapulalis (Walker, 1859) and Ostrinia zealis (Guenée, 1854). Results indicate that the four mitogenomes—O. furnacalis, O. nubilalis, O. scapulalis, and O. zealis—are 15,245, 15,248, 15,311, and 15,208 bp in size, respectively. All four mitogenomes are comprised of 37 encoded genes and a control region. All 13 protein-coding genes (PCGs) initiate with ATN and terminate with TAN, with the exception of cox1 that starts with CGA, and cox1, cox2, and nad5 that terminate with an incomplete codon T. All transfer RNA genes (tRNAs) present the typical clover-leaf secondary structure except for the trnS1 (AGN) gene. There are some conserved structural elements in the control region. Our analyses indicate that nad6 and atp6 exhibit higher evolution rates compared to other PCGs. Phylogenetic analyses based on mitogenomes using both maximum likelihood (ML) and Bayesian inference (BI) methods revealed the relationship (O. palustralis + (O. penitalis + (O. zealis + (O. furnacalis + (O. nubilalis + O. scapulalis))))) within Ostrinia.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1179
Author(s):  
Ueric José Borges de Souza ◽  
Luciana Cristina Vitorino ◽  
Layara Alexandre Bessa ◽  
Fabiano Guimarães Silva

Understanding the plastid genome is extremely important for the interpretation of the genetic mechanisms associated with essential physiological and metabolic functions, the identification of possible marker regions for phylogenetic or phylogeographic analyses, and the elucidation of the modes through which natural selection operates in different regions of this genome. In the present study, we assembled the plastid genome of Artocarpus camansi, compared its repetitive structures with Artocarpus heterophyllus, and searched for evidence of synteny within the family Moraceae. We also constructed a phylogeny based on 56 chloroplast genes to assess the relationships among three families of the order Rosales, that is, the Moraceae, Rhamnaceae, and Cannabaceae. The plastid genome of A. camansi has 160,096 bp, and presents the typical circular quadripartite structure of the Angiosperms, comprising a large single copy (LSC) of 88,745 bp and a small single copy (SSC) of 19,883 bp, separated by a pair of inverted repeat (IR) regions each with a length of 25,734 bp. The total GC content was 36.0%, which is very similar to Artocarpus heterophyllus (36.1%) and other moraceous species. A total of 23,068 codons and 80 SSRs were identified in the A. camansi plastid genome, with the majority of the SSRs being mononucleotide (70.0%). A total of 50 repeat structures were observed in the A. camansi plastid genome, in contrast with 61 repeats in A. heterophyllus. A purifying selection signal was found in 70 of the 79 protein-coding genes, indicating that they have all been highly conserved throughout the evolutionary history of the genus. The comparative analysis of the structural characteristics of the chloroplast among different moraceous species found a high degree of similarity in the sequences, which indicates a highly conserved evolutionary model in these plastid genomes. The phylogenetic analysis also recovered a high degree of similarity between the chloroplast genes of A. camansi and A. heterophyllus, and reconfirmed the hypothesis of the intense conservation of the plastome in the family Moraceae.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 261 ◽  
Author(s):  
Yongfu Li ◽  
Steven Paul Sylvester ◽  
Meng Li ◽  
Cheng Zhang ◽  
Xuan Li ◽  
...  

Magnolia zenii is a critically endangered species known from only 18 trees that survive on Baohua Mountain in Jiangsu province, China. Little information is available regarding its molecular biology, with no genomic study performed on M. zenii until now. We determined the complete plastid genome of M. zenii and identified microsatellites. Whole sequence alignment and phylogenetic analysis using BI and ML methods were also conducted. The plastome of M. zenii was 160,048 bp long with 39.2% GC content and included a pair of inverted repeats (IRs) of 26,596 bp that separated a large single-copy (LSC) region of 88,098 bp and a small single-copy (SSC) region of 18,757 bp. One hundred thirty genes were identified, of which 79 were protein-coding genes, 37 were transfer RNAs, and eight were ribosomal RNAs. Thirty seven simple sequence repeats (SSRs) were also identified. Comparative analyses of genome structure and sequence data of closely-related species revealed five mutation hotspots, useful for future phylogenetic research. Magnolia zenii was placed as sister to M. biondii with strong support in all analyses. Overall, this study providing M. zenii genomic resources will be beneficial for the evolutionary study and phylogenetic reconstruction of Magnoliaceae.


Sign in / Sign up

Export Citation Format

Share Document