scholarly journals Zuotai (β-HgS)-containing 70 Wei Zhen-Zhu-Wan (Rannasangpei) differs from mercury chloride and methylmercury on hepatic cytochrome P450

2020 ◽  
Author(s):  
Yu Nie ◽  
Shang-Fu Xu ◽  
Yan-Liu Lu ◽  
Xiu-Rong Zhao ◽  
Cen Li ◽  
...  

Abstract Background: Zuotai (mainly β-HgS)-containing 70 Wei-Zhen-Zhu-Wan (70W, Rannasangpei ) is a famous Tibetan medicine for cardiovascular and gastrointestinal diseases. We have shown that 70W protected against CCl 4 hepatotoxicity. CCl 4 is metabolized via cytochrome P450 (CYP450) to produce reactive metabolites. Whether 70W has any effect on CYP450 is unknown and such effects should be compared with mercury compounds for safety evaluation. Methods: Mice were given 70W (0.15-1.5 g/kg, po), Zuotai (30 mg/kg, po), HgCl 2 (33.6 mg/kg, po) and MeHg (3.1 mg/kg, po) for 7 days. Liver RNA and protein were isolated for qPCR and Western-blot analysis. Results: 70W and Zuotai had no effects on hepatic Aryl hydrocarbon receptor (AhR) and CYP1A2, but HgCl 2 and MeHg increased Cyp1a2 mRNA and CYP1A2 protein levels;70W and Zuotai had no effects on constitutive androstane receptor (CAR) ,CYP2B andCYP2E1 expressions, but HgCl 2 increased CAR and Cyp2b10 mRNA, HgCl 2 and MeHg increased CYP2B and CYP2E1 protein expressions; 70W and mercury compounds had no apparent effects on the expression of pregnane X receptor (PXR) and Cyp3a11 mRNA, as well as CYP3A proteins. 70W and mercury compounds had no apparent effects on the expression of peroxisome proliferator-activated receptor alpha (PPARα) and CYP4A; but HgCl 2 tended to increase Cyp4a10 mRNA and CYP4A protein expressions. 70W and Zuotai had no apparent effects on the expression of farnesoid X receptor (FXR) and Cyp7a1 , while HgCl 2 and MeHg increased CYP7A1 expression. Conclusions: Zuotai and Zuotai-containing 70W at clinical doses had minimal influence on hepatic CYPs, and the effects of 70W and Zuotai on CYP and corresponding nuclear receptors are different from HgCl 2 and MeHg.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 203
Author(s):  
Yu Nie ◽  
Shang-Fu Xu ◽  
Yan-Liu Lu ◽  
Xiu-Rong Zhao ◽  
Cen Li ◽  
...  

Background: Zuotai (mainly β-HgS)-containing 70 Wei-Zhen-Zhu-Wan (70W, Rannasangpei) is a famous Tibetan medicine for treating cardiovascular and gastrointestinal diseases.  We have shown that 70W protected against CCl4 hepatotoxicity.  CCl4 is metabolized via cytochrome P450 (CYP) to produce reactive metabolites. Whether 70W has any effect on CYPs is unknown and such effects should be compared with mercury compounds for safety evaluation.   Methods: Mice were given clinical doses of 70W (0.15-1.5 g/kg, po), Zuotai (30 mg/kg, po), and compared to HgCl2 (33.6 mg/kg, po) and MeHg (3.1 mg/kg, po) for seven days. Liver RNA and protein were isolated for qPCR and Western-blot analysis. Results: 70W and Zuotai had no effects on hepatic mRNA expression of Cyp1a2, Cyp2b10, Cyp3a11, Cyp4a10 and Cyp7a1, and corresponding nuclear receptors [aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor-α (PPARα); farnesoid X receptor (FXR)]. In comparison, HgCl2 and MeHg increased mRNA expression of Cyp1a2, Cyp2b10, Cyp4a10 and Cyp7a1 except for Cyp3a11, and corresponding nuclear receptors except for PXR. Western-blot confirmed mRNA results, showing increases in CYP1A2, CYP2B1, CYP2E1, CYP4A and CYP7A1 by HgCl2 and MeHg only, and all treatments had no effects on CYP3A. Conclusions: Zuotai and Zuotai-containing 70W at clinical doses had minimal influence on hepatic CYPs and corresponding nuclear receptors, while HgCl2 and MeHg produced significant effects.  Thus, the use of total Hg content to evaluate the safety of HgS-containing 70W is inappropriate.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 203
Author(s):  
Yu Nie ◽  
Shang-Fu Xu ◽  
Yan-Liu Lu ◽  
Xiu-Rong Zhao ◽  
Cen Li ◽  
...  

Background: Zuotai (mainly β-HgS)-containing 70 Wei-Zhen-Zhu-Wan (70W, Rannasangpei) is a famous Tibetan medicine for treating cardiovascular and gastrointestinal diseases.  We have shown that 70W protected against CCl4 hepatotoxicity.  CCl4 is metabolized via cytochrome P450 (CYP) to produce reactive metabolites. Whether 70W has any effect on CYPs is unknown and such effects should be compared with mercury compounds for safety evaluation.   Methods: Mice were given clinical doses of 70W (0.15-1.5 g/kg, po), Zuotai (30 mg/kg, po), and compared to HgCl2 (33.6 mg/kg, po) and MeHg (3.1 mg/kg, po) for seven days. Liver RNA and protein were isolated for qPCR and Western-blot analysis. Results: 70W and Zuotai had no effects on hepatic mRNA expression of Cyp1a2, Cyp2b10, Cyp3a11, Cyp4a10 and Cyp7a1, and corresponding nuclear receptors [aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor-α (PPARα); farnesoid X receptor (FXR)]. In comparison, HgCl2 and MeHg increased mRNA expression of Cyp1a2, Cyp2b10, Cyp4a10 and Cyp7a1 except for Cyp3a11, and corresponding nuclear receptors except for PXR. Western-blot confirmed mRNA results, showing increases in CYP1A2, CYP2B1, CYP2E1, CYP4A and CYP7A1 by HgCl2 and MeHg only, and all treatments had no effects on CYP3A. Conclusions: Zuotai and Zuotai-containing 70W at clinical doses had minimal influence on hepatic CYPs and corresponding nuclear receptors, while HgCl2 and MeHg produced significant effects.  Thus, the use of total Hg content to evaluate the safety of HgS-containing 70W is inappropriate.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jill A. Franzosa ◽  
Jessica A. Bonzo ◽  
John Jack ◽  
Nancy C. Baker ◽  
Parth Kothiya ◽  
...  

AbstractThe ToxCast in vitro screening program has provided concentration-response bioactivity data across more than a thousand assay endpoints for thousands of chemicals found in our environment and commerce. However, most ToxCast screening assays have evaluated individual biological targets in cancer cell lines lacking integrated physiological functionality (such as receptor signaling, metabolism). We evaluated differentiated HepaRGTM cells, a human liver-derived cell model understood to effectively model physiologically relevant hepatic signaling. Expression of 93 gene transcripts was measured by quantitative polymerase chain reaction using Fluidigm 96.96 dynamic arrays in response to 1060 chemicals tested in eight-point concentration-response. A Bayesian framework quantitatively modeled chemical-induced changes in gene expression via six transcription factors including: aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, farnesoid X receptor, androgen receptor, and peroxisome proliferator-activated receptor alpha. For these chemicals the network model translates transcriptomic data into Bayesian inferences about molecular targets known to activate toxicological adverse outcome pathways. These data also provide new insights into the molecular signaling network of HepaRGTM cell cultures.


2019 ◽  
Vol 20 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Shuqi Pu ◽  
Xiaojie Wu ◽  
Xiaoying Yang ◽  
Yunzhan Zhang ◽  
Yunkai Dai ◽  
...  

Background: Diabetes, with an increased prevalence and various progressive complications, has become a significant global health challenge. The concrete mechanisms responsible for the development of diabetes still remain incompletely unknown, although substantial researches have been conducted to search for the effective therapeutic targets. This review aims to reveal the novel roles of Xenobiotic Nuclear Receptors (XNRs), including the Peroxisome Proliferator-Activated Receptor (PPAR), the Farnesoid X Receptor (FXR), the Liver X Receptor (LXR), the Pregnane X Receptor (PXR) and the Constitutive Androstane Receptor (CAR), in the development of diabetes and provide potential strategies for research and treatment of metabolic diseases. Methods: We retrieved a large number of original data about these five XNRs and organized to focus on their recently discovered functions in diabetes and its complications. Results: Increasing evidences have suggested that PPAR, FXR, LXR ,PXR and CAR are involved in the development of diabetes and its complications through different mechanisms, including the regulation of glucose and lipid metabolism, insulin and inflammation response and related others. Conclusion: PPAR, FXR, LXR, PXR, and CAR, as the receptors for numerous natural or synthetic compounds, may be the most effective therapeutic targets in the treatment of metabolic diseases.


2021 ◽  
Vol 10 (8) ◽  
pp. 1763
Author(s):  
Marta Mazzetti ◽  
Giulia Marconi ◽  
Martina Mancinelli ◽  
Antonio Benedetti ◽  
Marco Marzioni ◽  
...  

Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are two chronic cholestatic liver diseases affecting bile ducts that may progress to biliary cirrhosis. In the past few years, the increasing knowledge in the pathogenesis of both diseases led to a growing number of clinical trials and possible new targets for therapy. In this review, we provide an update on the treatments in clinical use and summarize the new drugs in trials for PBC and PSC patients. Farnesoid X Receptor (FXR) agonists and Pan-Peroxisome Proliferator-Activated Receptor (PPAR) agonists are the most promising agents and have shown promising results in both PBC and PSC. Fibroblast Growth Factor 19 (FGF19) analogues also showed good results, especially in PBC, while, although PBC and PSC are autoimmune diseases, immunosuppressive drugs had disappointing effects. Since the gut microbiome could have a potential role in the pathogenesis of PSC, recent research focused on molecules that could change the microbiome, with good results. The near future of the medical management of these diseases may include new treatments or a combination of multiple drugs targeting different signaling pathways at different stages of the diseases.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1992 ◽  
Author(s):  
Firas H. Bazzari ◽  
Dalaal M. Abdallah ◽  
Hanan S. El-Abhar

Insulin resistance is a major risk factor for Alzheimer’s disease (AD). Chenodeoxycholic acid (CDCA) and synthetic Farnesoid X receptor (FXR) ligands have shown promising outcomes in ameliorating insulin resistance associated with various medical conditions. This study aimed to investigate whether CDCA treatment has any potential in AD management through improving insulin signaling. Adult male Wistar rats were randomly allocated into three groups and treated for six consecutive weeks; control (vehicle), AD-model (AlCl3 50 mg/kg/day i.p) and CDCA-treated group (AlCl3 + CDCA 90 mg/kg/day p.o from day 15). CDCA improved cognition as assessed by Morris Water Maze and Y-maze tests and preserved normal histological features. Moreover, CDCA lowered hippocampal beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and amyloid-beta 42 (Aβ42). Although no significant difference was observed in hippocampal insulin level, CDCA reduced insulin receptor substrate-1 phosphorylation at serine-307 (pSer307-IRS1), while increased protein kinase B (Akt) activation, glucose transporter type 4 (GLUT4), peroxisome proliferator-activated receptor gamma (PPARγ) and glucagon-like peptide-1 (GLP-1). Additionally, CDCA activated cAMP response element-binding protein (CREB) and enhanced brain-derived neurotrophic factor (BDNF). Ultimately, CDCA was able to improve insulin sensitivity in the hippocampi of AlCl3-treated rats, which highlights its potential in AD management.


2019 ◽  
Vol 149 (9) ◽  
pp. 1553-1564 ◽  
Author(s):  
Ji Ye Lim ◽  
Chun Liu ◽  
Kang-Quan Hu ◽  
Donald E Smith ◽  
Dayong Wu ◽  
...  

ABSTRACT Background β-Cryptoxanthin (BCX), a provitamin A carotenoid shown to protect against nonalcoholic fatty liver disease (NAFLD), can be cleaved by β-carotene-15,15′-oxygenase (BCO1) to generate vitamin A, and by β-carotene-9′,10′-oxygenase (BCO2) to produce bioactive apo-carotenoids. BCO1/BCO2 polymorphisms have been associated with variations in plasma carotenoid amounts in both humans and animals. Objectives We investigated whether BCX feeding inhibits high refined-carbohydrate diet (HRCD)-induced NAFLD, dependent or independent of BCO1/BCO2. Methods Six-week-old male wild-type (WT) and BCO1−/−/BCO2−/− double knockout (DKO) mice were randomly fed HRCD (66.5% of energy from carbohydrate) with or without BCX (10 mg/kg diet) for 24 wk. Pathological and biochemical variables were analyzed in the liver and mesenteric adipose tissues (MATs). Data were analyzed by 2-factor ANOVA. Results Compared to their respective HRCD controls, BCX reduced hepatic steatosis severity by 33‒43% and hepatic total cholesterol by 43‒70% in both WT and DKO mice (P < 0.01). Hepatic concentrations of BCX, but not retinol and retinyl palmitate, were 33-fold higher in DKO mice than in WT mice (P < 0.001). BCX feeding increased the hepatic fatty acid oxidation protein peroxisome proliferator-activated receptor-α, and the cholesterol efflux gene ATP-binding cassette transporter5, and suppressed the lipogenesis gene acetyl-CoA carboxylase 1 (Acc1) in the MAT of WT mice but not DKO mice (P < 0.05). BCX feeding decreased the hepatic lipogenesis proteins ACC and stearoyl-CoA desaturase-1 (3-fold and 5-fold) and the cholesterol synthesis genes 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase and HMG-CoA synthase 1 (2.7-fold and 1.8-fold) and increased the cholesterol catabolism gene cholesterol 7α-hydroxylase (1.9-fold) in the DKO but not WT mice (P < 0.05). BCX feeding increased hepatic protein sirtuin1 (2.5-fold) and AMP-activated protein kinase (9-fold) and decreased hepatic farnesoid X receptor protein (80%) and the inflammatory cytokine gene Il6 (6-fold) in the MAT of DKO mice but not WT mice (P < 0.05). Conclusion BCX feeding mitigates HRCD-induced NAFLD in both WT and DKO mice through different mechanisms in the liver-MAT axis, depending on the presence or absence of BCO1/BCO2.


Sign in / Sign up

Export Citation Format

Share Document