scholarly journals Identification of an autophagy-related gene expression prognostic model in endometrial carcinoma patients

2020 ◽  
Author(s):  
Pinping Jiang ◽  
Wei Sun ◽  
Ningmei Shen ◽  
Qiang Wang ◽  
Shouyu Wang ◽  
...  

Abstract Background Autophagy, as a lysosomal degradation pathway, has been reported to be involved in various pathologies, including cancer. However, the expression profiles of autophagy-related genes (ARGs) in endometrial cancer (EC) remain poorly understood. Methods In this study, we analyzed the expression of MRGs using The Cancer Genome Atlas (TCGA) data to screen differentially expressed MRGs (DE-MRGs) significantly correlated to EC patients’ prognosis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DE-MRGs were investigated. LASSO algorithm and Cox regression analysis were performed to select MRGs closely related to EC patients’ outcomes. A prognostic signature was developed and the efficacy were validated in part of and the entire TCGA EC cohort. Moreover, we developed a comprehensive nomogram including the risk model and clinical features to predict EC patients' survival probability. Results Ninety-four ARGs significantly dysregulated in EC samples compared with the normal control samples. Functional enrichment analysis showed these differentially expressed ARGs (DE-ARGs) were highly enriched in apoptosis, P53 signaling pathway, and various cancer development. Among the 94 DE-ARGs, we subsequently screen out four-ARGs closely related to EC patients outcomes, which are ERBB2, PTEN, TP73 and ARSA. Based on the expression and coefficiency of 4 DE-ARGs, we developed a prognostic signature and further validated its efficacy in part of and the entire TCGA EC cohort. The four ARGs signature was independent of other clinical features, and was proved to effectively distinguish high- or low-risk EC patients and predicted patients' OS accurately. Moreover, the nomogram showed the excellent consistency between the prediction and actual observation in terms of patients' 3- and 5-year survival rates. Conclusions It was suggested that the ARG prognostic model and the comprehensive nomogram may guide the precise outcome prediction and rational therapy in clinical practice.

2020 ◽  
Author(s):  
Pinping Jiang ◽  
Wei Sun ◽  
Ningmei Shen ◽  
Xiaohao Huang ◽  
Shilong Fu

Abstract Background: Metabolic abnormalities have recently been widely studied in various cancer types. This study aims to explore the expression profiles of metabolism-related genes (MRGs) in endometrial cancer (EC). Methods: We analyzed the expression of MRGs using The Cancer Genome Atlas (TCGA) data to screen differentially expressed MRGs (DE-MRGs) significantly correlated to EC patients’ prognosis. Functional pathway enrichment analysis of DE-MRGs were investigated. LASSO algorithm and Cox regression analysis were performed to select MRGs closely related to EC patients’ outcomes. A prognostic signature was developed and the efficacy were validated in part of and the entire TCGA EC cohort. Moreover, we developed a comprehensive nomogram including the risk model and clinical features to predict EC patients' survival probability.Results: Forty-seven differentially expressed MRGs (DE-MRGs) were significantly correlate to EC patients’ prognosis. Functional enrichment analysis showed these MRGs were highly enriched in amino acid, glycolysis, and glycerophospholipid metabolism. Nine MRGs were screened out to closely relate to EC patients’ outcomes, which are CYP4F3, CEL, GPAT3, LYPLA2, HNMT, PHGDH, CKM, UCK2 and ACACB. Based on nine DE-MRGs, we developed a prognostic signature and its efficacy in part of and the entire TCGA EC cohort was validated. The nine-MRGs signature was independent of other clinical features, and could effectively distinguish high- or low-risk EC patients and predicted patients' OS. The nomogram showed excellent consistency between prediction and actual survival observation. Conclusions: The MRG prognostic model and the comprehensive nomogram could guide for precise outcom predicting and rational therapy in clinical practice.


2020 ◽  
Author(s):  
Pinping Jiang ◽  
Wei Sun ◽  
Ningmei Shen ◽  
Qiang Wang ◽  
Shouyu Wang ◽  
...  

Abstract Background Autophagy, as a lysosomal degradation pathway, has been reported to be involved in various pathologies, including cancer. However, the expression profiles of autophagy-related genes (ARGs) in endometrial cancer (EC) remain poorly understood. Methods In this study, we analyzed the expression of MRGs using The Cancer Genome Atlas (TCGA) data to screen differentially expressed MRGs (DE-MRGs) significantly correlated to EC patients’ prognosis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DE-MRGs were investigated. LASSO algorithm and Cox regression analysis were performed to select MRGs closely related to EC patients’ outcomes. A prognostic signature was developed and the efficacy were validated in part of and the entire TCGA EC cohort. Moreover, we developed a comprehensive nomogram including the risk model and clinical features to predict EC patients' survival probability. Results Ninety-four ARGs significantly dysregulated in EC samples compared with the normal control samples. Functional enrichment analysis showed these differentially expressed ARGs (DE-ARGs) were highly enriched in apoptosis, P53 signaling pathway, and various cancer development. Among the 94 DE-ARGs, we subsequently screen out four-ARGs closely related to EC patients outcomes, which are ERBB2, PTEN, TP73 and ARSA. Based on the expression and coefficiency of 4 DE-ARGs, we developed a prognostic signature and further validated its efficacy in part of and the entire TCGA EC cohort. The four ARGs signature was independent of other clinical features, and was proved to effectively distinguish high- or low-risk EC patients and predicted patients' OS accurately. Moreover, the nomogram showed the excellent consistency between the prediction and actual observation in terms of patients' 3- and 5-year survival rates. Conclusions It was suggested that the ARG prognostic model and the comprehensive nomogram may guide the precise outcome prediction and rational therapy in clinical practice.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pinping Jiang ◽  
Wei Sun ◽  
Ningmei Shen ◽  
Xiaohao Huang ◽  
Shilong Fu

Abstract Background Metabolic abnormalities have recently been widely studied in various cancer types. This study aims to explore the expression profiles of metabolism-related genes (MRGs) in endometrial cancer (EC). Methods We analyzed the expression of MRGs using The Cancer Genome Atlas (TCGA) data to screen differentially expressed MRGs (DE-MRGs) significantly correlated with EC patient prognosis. Functional pathway enrichment analysis of the DE-MRGs was performed. LASSO and Cox regression analyses were performed to select MRGs closely related to EC patient outcomes. A prognostic signature was developed, and the efficacy was validated in part of and the entire TCGA EC cohort. Moreover, we developed a comprehensive nomogram including the risk model and clinical features to predict EC patients’ survival probability. Results Forty-seven DE-MRGs were significantly correlated with EC patient prognosis. Functional enrichment analysis showed that these MRGs were highly enriched in amino acid, glycolysis, and glycerophospholipid metabolism. Nine MRGs were found to be closely related to EC patient outcomes: CYP4F3, CEL, GPAT3, LYPLA2, HNMT, PHGDH, CKM, UCK2 and ACACB. Based on these nine DE-MRGs, we developed a prognostic signature, and its efficacy in part of and the entire TCGA EC cohort was validated. The nine-MRG signature was independent of other clinical features, and could effectively distinguish high- and low-risk EC patients and predict patient OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Conclusions The MRG prognostic model and the comprehensive nomogram could guide precise outcome prediction and rational therapy selection in clinical practice.


2020 ◽  
Author(s):  
Pinping Jiang ◽  
Wei Sun ◽  
Ningmei Shen ◽  
Xiaohao Huang ◽  
Shilong Fu

Abstract Background: Metabolic abnormalities have recently been widely studied in various cancer types. This study aims to explore the expression profiles of metabolism-related genes (MRGs) in endometrial cancer (EC). Methods: We analyzed the expression of MRGs using The Cancer Genome Atlas (TCGA) data to screen differentially expressed MRGs (DE-MRGs) significantly correlated with EC patient prognosis. Functional pathway enrichment analysis of the DE-MRGs was performed. LASSO and Cox regression analyses were performed to select MRGs closely related to EC patient outcomes. A prognostic signature was developed, and the efficacy was validated in part of and the entire TCGA EC cohort. Moreover, we developed a comprehensive nomogram including the risk model and clinical features to predict EC patients' survival probability.Results: Forty-seven DE-MRGs were significantly correlated with EC patient prognosis. Functional enrichment analysis showed that these MRGs were highly enriched in amino acid, glycolysis, and glycerophospholipid metabolism. Nine MRGs were found to be closely related to EC patient outcomes: CYP4F3, CEL, GPAT3, LYPLA2, HNMT, PHGDH, CKM, UCK2 and ACACB. Based on these nine DE-MRGs, we developed a prognostic signature, and its efficacy in part of and the entire TCGA EC cohort was validated. The nine-MRG signature was independent of other clinical features, and could effectively distinguish high- and low-risk EC patients and predict patient OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Conclusions: The MRG prognostic model and the comprehensive nomogram could guide precise outcome prediction and rational therapy selection in clinical practice.


2020 ◽  
Author(s):  
Pinping Jiang ◽  
Wei Sun ◽  
Ningmei Shen ◽  
Xiaohao Huang ◽  
Shilong Fu

Abstract Background: Metabolic abnormalities have recently been widely studied in various cancer types. This study aims to explore the expression profiles of metabolism-related genes (MRGs) in endometrial cancer (EC). Methods: We analyzed the expression of MRGs using The Cancer Genome Atlas (TCGA) data to screen differentially expressed MRGs (DE-MRGs) significantly correlated with EC patient prognosis. Functional pathway enrichment analysis of the DE-MRGs was performed. LASSO and Cox regression analyses were performed to select MRGs closely related to EC patient outcomes. A prognostic signature was developed, and the efficacy was validated in part of and the entire TCGA EC cohort. Moreover, we developed a comprehensive nomogram including the risk model and clinical features to predict EC patients' survival probability. Results: Forty-seven DE-MRGs were significantly correlated with EC patient prognosis. Functional enrichment analysis showed that these MRGs were highly enriched in amino acid, glycolysis, and glycerophospholipid metabolism. Nine MRGs were found to be closely related to EC patient outcomes: CYP4F3, CEL, GPAT3, LYPLA2, HNMT, PHGDH, CKM, UCK2 and ACACB. Based on these nine DE-MRGs, we developed a prognostic signature, and its efficacy in part of and the entire TCGA EC cohort was validated. The nine-MRG signature was independent of other clinical features, and could effectively distinguish high- and low-risk EC patients and predict patient OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Conclusions: The MRG prognostic model and the comprehensive nomogram could guide precise outcome prediction and rational therapy selection in clinical practice.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2021 ◽  
Vol 18 (6) ◽  
pp. 8045-8063
Author(s):  
Han Zhao ◽  
◽  
Yun Chen ◽  
Peijun Shen ◽  
Lan Gong ◽  
...  

<abstract> <sec><title>Background</title><p>Uveal melanoma (UM) is the most aggressive intraocular tumor worldwide. Accurate prognostic models are urgently needed. The present research aimed to construct and validate a prognostic signature is associated with overall survival (OS) for UM patients based on metabolism-related genes (MRGs).</p> </sec> <sec><title>Methods</title><p>MRGs were obtained from molecular signature database (MSigDB). The gene expression profiles and patient clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. In the training datasets, MRGs were analyzed through univariate Cox regression analyses and least absolute shrinkage and selection operator (LASSO) Cox analyses to build a prognostic model. The GSE84976 was treated as the validation cohort. In addition, time-dependent receiver operating characteristic (ROC) and Kaplan-Meier survival curve analyses the reliability of the developed model. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. Nomogram that combined the five-gene signature was used to evaluate the predictive OS value of UM patients.</p> </sec> <sec><title>Results</title><p>Five MRGs were identified and used to establish the prognostic model for UM patients. The model was successfully validated using the testing cohort. Moreover, ROC analysis demonstrated a strong predictive ability that our prognostic signature had for UM prognosis. Multivariable Cox regression analysis revealed that the risk model was an independent predictor of prognosis. UM patients with a high-risk score showed a higher level of immune checkpoint molecules.</p> </sec> <sec><title>Conclusion</title><p>We established a novel metabolism-related signature that could predict survival and might be therapeutic targets for the treatment of UM patients.</p> </sec> </abstract>


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11219
Author(s):  
Yandong Miao ◽  
Hongling Zhang ◽  
Bin Su ◽  
Jiangtao Wang ◽  
Wuxia Quan ◽  
...  

Colorectal cancer (CRC) is one of the most prevalent and fatal malignancies, and novel biomarkers for the diagnosis and prognosis of CRC must be identified. RNA-binding proteins (RBPs) are essential modulators of transcription and translation. They are frequently dysregulated in various cancers and are related to tumorigenesis and development. The mechanisms by which RBPs regulate CRC progression are poorly understood and no clinical prognostic model using RBPs has been reported in CRC. We sought to identify the hub prognosis-related RBPs and to construct a prognostic model for clinical use. mRNA sequencing and clinical data for CRC were obtained from The Cancer Genome Atlas database (TCGA). Gene expression profiles were analyzed to identify differentially expressed RBPs using R and Perl software. Hub RBPs were filtered out using univariate Cox and multivariate Cox regression analysis. We used functional enrichment analysis, including Gene Ontology and Gene Set Enrichment Analysis, to perform the function and mechanisms of the identified RBPs. The nomogram predicted overall survival (OS). Calibration curves were used to evaluate the consistency between the predicted and actual survival rate, the consistency index (c-index) was calculated, and the prognostic effect of the model was evaluated. Finally, we identified 178 differently expressed RBPs, including 121 up-regulated and 57 down-regulated proteins. Our prognostic model was based on nine RBPs (PNLDC1, RRS1, HEXIM1, PPARGC1A, PPARGC1B, BRCA1, CELF4, AEN and NOVA1). Survival analysis showed that patients in the high-risk subgroup had a worse OS than those in the low-risk subgroup. The area under the curve value of the receiver operating characteristic curve of the prognostic model is 0.712 in the TCGA cohort and 0.638 in the GEO cohort. These results show that the model has a moderate diagnostic ability. The c-index of the nomogram is 0.77 in the TCGA cohort and 0.73 in the GEO cohort. We showed that the risk score is an independent prognostic biomarker and that some RBPs may be potential biomarkers for the diagnosis and prognosis of CRC.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer. Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an . Functional enrichment analysis was performed by Metascape. Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR , MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1 ). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000). Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guomin Wu ◽  
Qihao Wang ◽  
Ting Zhu ◽  
Linhai Fu ◽  
Zhupeng Li ◽  
...  

This study aimed to establish a prognostic risk model for lung adenocarcinoma (LUAD). We firstly divided 535 LUAD samples in TCGA-LUAD into high-, medium-, and low-immune infiltration groups by consensus clustering analysis according to immunological competence assessment by single-sample gene set enrichment analysis (ssGSEA). Profile of long non-coding RNAs (lncRNAs) in normal samples and LUAD samples in TCGA was used for a differential expression analysis in the high- and low-immune infiltration groups. A total of 1,570 immune-related differential lncRNAs in LUAD were obtained by intersecting the above results. Afterward, univariate COX regression analysis and multivariate stepwise COX regression analysis were conducted to screen prognosis-related lncRNAs, and an eight-immune-related-lncRNA prognostic signature was finally acquired (AL365181.2, AC012213.4, DRAIC, MRGPRG-AS1, AP002478.1, AC092168.2, FAM30A, and LINC02412). Kaplan–Meier analysis and ROC analysis indicated that the eight-lncRNA-based model was accurate to predict the prognosis of LUAD patients. Simultaneously, univariate COX regression analysis and multivariate COX regression analysis were undertaken on clinical features and risk scores. It was illustrated that the risk score was a prognostic factor independent from clinical features. Moreover, immune data of LUAD in the TIMER database were analyzed. The eight-immune-related-lncRNA prognostic signature was related to the infiltration of B cells, CD4+ T cells, and dendritic cells. GSEA enrichment analysis revealed significant differences in high- and low-risk groups in pathways like pentose phosphate pathway, ubiquitin mediated proteolysis, and P53 signaling pathway. This study helps to treat LUAD patients and explore molecules related to LUAD immune infiltration to deeply understand the specific mechanism.


Sign in / Sign up

Export Citation Format

Share Document