scholarly journals Detection of Escherichia albertii in urinary and gastrointestinal infections in Kermanshah, Iran

2020 ◽  
Author(s):  
Afshin Namdari ◽  
Bahareh Rahimian-zarif ◽  
Azadeh Foroughi

Abstract Background Escherichia albertii (E. albertii) is a Gram-negative and facultative anaerobe bacterium. In recent years, the bacterium has been isolated from the feces of people with gastroenteritis as a pathogen that causes diarrhea. Due to insufficient information on the phenotypic and biochemical characteristics of E. albertii, it is difficult to distinguish it from other species of the Enterobacteriaceae family. This is especially prevalent in the pathotypes of Escherichia coli (E. coli). Moreover, in clinical laboratories, it is mistakenly identified as E. coli or even Hafnia alvei (H. alvei). This study was performed for the first time in Iran to identify E. albertii by PCR method from a sample of urinary and gastrointestinal infections obtained from clinical laboratories in Kermanshah, which were distinguished as E. coli. Methods In this study, 60 urinary samples and 40 fecal samples that were identified as E. coli by phenotypic and biochemical methods in clinical laboratories. The samples were re-evaluated in the first step in terms of specific phenotypic and biochemical characteristics of E. coli. Subsequently, DNA was extracted from the isolates by the phenol method. Then, two lysP and mdh genes were detected for E. albertii and the uidA gene for E. coli by PCR using specific primers pairs. Results The results obtained from phenotypic and biochemical tests indicated that all samples were consistent with E. coli characteristics. However, findings from PCR showed that out of a total of 100 samples, specific genes of E. coli were identified in 6 samples (6%) and uidA gene in 94 remaining samples (94%). Of these 6 samples, 5 samples were urinary tract infections, and only one was a gastrointestinal infection. Conclusion The findings of this study show that E. albertii can be considered as one of the causes of urinary and gastrointestinal infections that are mistakenly identified in clinical laboratories as E. coli.Therefore, the use of molecular methods for accurate and definitive diagnosis of bacteria can be useful.

2018 ◽  
Vol 12 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Yacoub R. Nairoukh ◽  
Azmi M. Mahafzah ◽  
Amal Irshaid ◽  
Asem A. Shehabi

Background: Emergence of multi-drug resistant uropathogenic E. coli strains is an increasing problem to empirical treatment of urinary tract infections in many countries. This study investigated the magnitude of this problem in Jordan. Methods: A total of 262 E. coli isolates were recovered from urine samples of Jordanian patients which were suspected to have urinary tract infections (UTIs). All isolates were primarily identified by routine biochemical tests and tested for antimicrobial susceptibility by disc diffusion method. Fifty representative Multidrug Resistance (MDR) E. coli isolates to 3 or more antibiotic classes were tested for the presence of resistance genes of blaCTX-M- 1, 9 and 15, carbapenemase (blaIMP, blaVIM, blaNDM-1, blaOXA-48), fluoroquinolones mutated genes (parC and gyrA) and clone of ST131 type using PCR methods. Results: A total of 150/262 (57.3%) of E. coli isolates were MDR. Urine samples of hospitalized patients showed significantly more MDR isolates than outpatients. Fifty representative MDR E. coli isolates indicated the following molecular characteristics: All were positive for mutated parC gene and gyrA and for ST131 clone, and 78% were positive for genes of CTX-M-15, 76% for CTX-M-I and for 8% CTX-M-9, respectively. Additionally, all 50 MDR E. coli isolates were negative for carbapenemase genes (blaIMP, blaVIM, blaNDM-1, blaOXA-48), except of one isolate was positive for blaKPC-2 . Conclusion: This study indicates alarming high rates recovery of MDR uropathogenic E. coli from Jordanian patients associated with high rates of positive ST131 clone, fluoroquinolone resistant and important types of blaCTX-M.


2020 ◽  
pp. 69-71
Author(s):  
Kaina Bhonsle ◽  
Harish Vyas ◽  
Kirti Hemwani ◽  
Alka Vyas

Background: Urinary tract infections (UTI’s) define a condition in which urinary tract is infected with a pathogen causing inflammation. Urinary tract infections are one of the most prevalent infections affecting people of all age group from neonates to adults and are major cause of morbidity and several disorders in patients. In serious cases urinary tract infection lead to kidney failure, septicemia, bacterial endocarditis, prostatitis and infertility. Aim: The objective of this work was to the study the prevalence of urinary tract infections among patients of Ujjain and to identify prominent bacterial pathogens responsible for causing UTI. Methods: A total of 500 urine samples were collected aseptically and cultured on Blood agar and Mac’conkey agar. The bacterial isolates were identified based on their colony morphological characteristics, Gram stain reaction and their biochemical tests. Result: After overnight incubation a total of 307 out of 500 patients tested positive for UTI suggesting that (61%) of patients suffered from UTI infections. It was seen that (89%) of bacterial isolates causing UTI were Gram negative and (11%) were Gram positive. The identification of pathogens indicated that E. coli is most prevalent uropathogen followed by K. pneumonae, P. aeruginosa, E. faecalis, S. aureus and P.vulgaris. Conclusion: The study shows that prevalence of UTI is higher in females as compared to males. It was also been seen that UTI infections were prevalent in urban as well as in rural patients, however, the incidence of infection was slightly high in urban patients. This study is important as constant survey and identification of uropathogens is essential for effective treatment of UTI.


2019 ◽  
Vol 23 (10) ◽  
pp. 40 ◽  
Author(s):  
Wisal R. Yaseen AL- Hayali1 ◽  
Alaa Younis Mahdy2 ◽  
Muhammad Abdul Zaraq Ibrahim3

This study was designed to detect the presence of genes encoding autotranspoter proteins in E. coli that causes UTI by using PCR techniques. Seventy two urine sample were collected from patients infected with UTI whom attended to Salah-AL-deen general hospital in Tikrit city, during three months period (September to November 2016). All samples were cultivated on Blood agar and MacConkey agar. The 47(65.2%) E. coli isolates were confirmed using standard biochemical tests for E. coli. The results indicate the frequencies of Sat gene was 27 strains(57.5%) while Vat gene was 12 strains (25.5%) while the Duplex PCR detected 8(17%) strains of E. coli contained two genes. With this method, we confirmed that autotransporter genes are pathospecifically distributed among the E. coli strains studied.   http://dx.doi.org/10.25130/tjps.23.2018.167


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1828 ◽  
Author(s):  
Paul Katongole ◽  
Daniel Bulwadda Kisawuzi ◽  
Henry Kyobe Bbosa ◽  
David Patrick Kateete ◽  
Christine Florence Najjuka

Introduction: Uropathogenic Escherichia coli (UPEC) remains the most common cause of urinary tract infections (UTIs). They account for over 80-90% of all community-acquired and 30-50% of all hospital-acquired UTIs. E. coli strains have been found to belong to evolutionary origins known as phylogenetic groups. In 2013, Clermont classified E. coli strains into eight phylogenetic groups using the quadruplex PCR method. The aim of this study was to identify the phylogenetic groups of UPEC strains in Uganda using Clermont’s quadruplex PCR method and to assess their antibiotic susceptibility patterns in Uganda. Methods: In this cross-sectional study, 140 stored uropathogenic E. coli isolates from the Clinical Microbiology Laboratory, Department of Medical Microbiology, College of Health Sciences Makerere University were subjected to phylogenetic typing by a quadruplex PCR method. Antimicrobial susceptibility testing was performed by disk diffusion method according to Clinical & Laboratory Standards Institute (CLSI) guidelines. Phenotypic detection of extended-spectrum beta-lactamase, AmpC and carbapenemases was done according to CLSI guidelines and Laboratory SOPs. Results: Phylogenetic group B2 (40%) was the most predominant, followed by A (6.23%), clade I and II (5%), D and E (each 2.14%), B1 (1.43%) and F and C (each 0.71%). The most common resistant antibiotic was trimethoprim-sulphamethoxazole (90.71%) and the least was imipenem (1.43%). In total, 73.57% of isolates were multi-drug resistant (MDR). Antibiotic resistance was mainly detected in phylogenetic group B2 (54%). Conclusions: Our findings showed the high prevalence of MDR E. coli isolates, with the dominance of phylogenetic group B2. About 9% of E. coli isolates belonged to the newly described phylogroups C, E, F, and clade I and II.


Author(s):  
Moses Oghenaigah Eghieye ◽  
Istifanus Haruna Nkene ◽  
Rejoice Helma Abimiku ◽  
Yakubu Boyi Ngwai ◽  
Ibrahim Yahaya ◽  
...  

Urinary tract infections (UTIs) caused by Escherichia coli (E. coli) is common worldwide; and its successful treatment using antibiotics is limited by acquisition of resistance by the bacteria. This study investigated the occurrence of plasmid-mediated quinolone resistance (PMQR) genes in ciprofloxacin-resistant E. coli from urine of patients with suspected cases of UTIs attending Garki Hospital Abuja (GHA), Nigeria. A total of 8 confirmed ciprofloxacin-resistant E. coli was screened for carriage of PMQR genes using polymerase chain reaction (PCR) method. The occurrences of the PMQR genes detected were in the order: aac-(6′)-Ib-cr (87.5%) > qnrB (50.0%) > qnrS (37.5%) > oqxAB (12.5%) > qnrA(0.0%). qnrB and qnrS did not exist alone, but in combination with other genes; aac-(6′)-Ib-crexisted both alone and in combination with others; the most prevalent patterns of existence were aac-(6′)-Ib-cr alone and aac-(6′)-Ib-cr + qnrB + qnrS at 25.0% each. This study has shown that the ciprofloxacin-resistant E. coli harbored aac-(6′)-Ib-cr, qnrB, qnrS and oqxAB PMQR genes, with aac-(6′)-Ib-cr being the most prevalent. The genes were present either alone or in combination with one another. This has implication for the clinical application of fluoroquinolones to treat UTI in the study location and environs. 


2020 ◽  
Vol 44 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Shiva Mirkalantari ◽  
Faramarz Masjedian ◽  
Gholamreza Irajian ◽  
Emmanuel Edwar Siddig ◽  
Azam Fattahi

Abstract Background Escherichia coli accounts for 70–95% of community-acquired urinary tract infections (UTIs). Recently, there has been an increase in the prevalence of extended-spectrum β-lactamase (ESBL) in the community which required an accurate identification for better management. Therefore, the current study was performed to determine the antimicrobial resistance pattern, investigate ESBL phenotypes and genotypes (blaCTX-M, bla TEM and bla SHV genes) and determine the phylogenetic groups among ESBL-positive isolates from outpatients. Methods One hundred and eighty-three positive urine samples were collected from 4450 outpatient clinic attendees. Antibiotic susceptibility was determined and ESBL phenotype screening was carried out using disk diffusion agar and combination disk techniques, respectively. The assessment of the presence of the blaCTX-M, bla TEM and blaSHV genes and phylogenetic grouping were performed using the polymerase chain reaction (PCR) method. Results Out of 183 E. coli isolates, 59 (32.2%) showed a positive ESBL phenotype. The prevalence of ESBL-producing E. coli was higher in males (57.4%). Fifty-seven of the ESBL-producing strains carried at least one of the β-lactamase genes (bla CTX-M, bla TEM, bla SHV). Phylotyping of multi-drug resistant isolates indicated that the isolates belonged to B2, A and D phylogroups. Analysis of resistance patterns among these phylogroups revealed that 74.4%, 55.3% and 29.7% of the isolates in the B2 group were resistant to trimethoprim-sulfamethoxazole, ciprofloxacin and gentamicin, respectively. Most of the strains in the phylogroup B2 carried the bla CTX-M gene. Conclusions All the ESBL-producing isolates were placed in one of the four phylogenetic groups. The presence of CTX-M and resistance to quinolones were more frequent in B2 strains than in non-B2 strains.


2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Mostafa Boroumand Boroumand ◽  
Mohsen Naghmachi ◽  
Mohammad Amin Ghatee

Background: Many bacteria can cause urinary tract infections (UTIs), among which Escherichia coli is the most common causative agent. E. coli strains are divided into eight phylogenetic groups based on the new Quadroplex-PCR method, which are different in terms of patterns of resistance to antibiotics, virulence, and environmental characteristics. Objectives: This study aimed to determine the phylogenetic groups and the prevalence of drug resistance genes in E. coli strains causing UTIs. Methods: In this descriptive cross-sectional study, 129 E. coli isolates obtained from the culture of patients with UTIs were evaluated for phylogenetic groups using the new method of Clermont et al. The identification of phylogenetic groups and antibiotic resistance genes was performed using the multiplex polymerase chain reaction (PCR) method. Results: In this study, concerning the distribution of phylogenetic groups among E. coli isolates, the phylogenetic group B2 (36.4%) was the most common phylogenetic group, followed by phylogroups C (13.2%), clade I (10.1%), D (9.3%), and A (3.1%) while groups B1 and F were not observed in any of the isolates, and 20.2% had an unknown state. Also, out of 129 E. coli isolates, the total frequency of tetA, tetB, sul1, sul2, CITM, DfrA, and qnr resistance genes was 59.7%, 66.7, 69, 62, 30.2, 23.3, and 20.2%, respectively. In this study, there was a significant relationship between antibiotics (P = 0.026), cefotaxime (P = 0.003), and nalidixic acid (P = 0.044) and E. coli phylogenetic groups. No significant relationship was observed between E. coli phylogenetic groups and antibiotic resistance genes. Conclusions: The results of this study showed that strains belonging to group B2 had the highest prevalence among other phylogroups, and also, the frequency of antibiotic resistance genes and drug-resistant isolates had a higher prevalence in this phylogroup. These results show that phylogroup B2 has a more effective role in causing urinary tract infections compared to other phylogroups, and this phylogroup can be considered a genetic reservoir of antibiotic resistance.


2021 ◽  
Author(s):  
João Gabriel Material Soncini ◽  
Louise Cerdeira ◽  
Vanessa Lumi Koga ◽  
Ariane Tiemy Tizura ◽  
Bruna Fuga ◽  
...  

ABSTRACTDuring a microbiological and genomic surveillance study to investigate the molecular epidemiology of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from community-acquired urinary tract infections (UTI) and commercial meat samples, in a Brazilian city with a high occurrence of infections by ESBL-producing bacteria, we have identified the presence of CTX-M (-55, -27, -24, -15, -14 and -2)-producing E. coli belonging to the international clones ST354, ST131, ST117, and ST38. The ST131 was more prevalent in human samples, and worryingly the high-risk ST131-C1-M27 was identified in human infections for the first time. We also detected CTX-M-55-producing E. coli ST117 isolates from meat samples (i.e., chicken and pork) and human infections. Moreover, we have identified the important clone CTX-M-24-positive E. coli ST354 from human samples in Brazil for the first time. In brief, our results suggest a potential of commercialized meat as a reservoir of high-priority E. coli lineages in the community. In contrast, the identification of E. coli ST131-C1-M27 indicates that novel pandemic clones have emerged in Brazil, constituting a public health issue.


2018 ◽  
Vol 6 (11) ◽  
Author(s):  
Aixia Xu ◽  
Sarah Hertrich ◽  
David S. Needleman ◽  
Shiowshuh Sheen ◽  
Christopher Sommers

ABSTRACT Uropathogenic Escherichia coli serotype O4:H5 isolates (ATCC 700414, 700415, 700416, and 700417) were recovered from women with first-time urinary tract infections. Here, we report the draft genome sequences for these four E. coli isolates, which are currently being used to validate food safety processing technologies.


2019 ◽  
Vol 8 (12) ◽  
pp. 2118
Author(s):  
Ángel Rodríguez-Villodres ◽  
Rémy A. Bonnin ◽  
José Manuel Ortiz de la Rosa ◽  
Rocío Álvarez-Marín ◽  
Thierry Naas ◽  
...  

Escherichia coli is the most frequent Gram-negative bacilli involved in intra-abdominal infections. However, despite high mortality rates associated with biliary tract infections due to E. coli, there is no study focusing on this pathogen. In this study, we have characterized a group of 15 E. coli isolates obtained from 12 patients with biliary tract infections. Demographic and clinical data of the patients were recovered. Phylogeny, resistome, and virulome analysis through whole genome sequencing and biofilm formation were investigated. Among the 15 E. coli isolates, no predominant sequence type (ST) was identified, although 3 of them belonged to unknown STs (20%). Resistance to ampicillin, amoxicillin/clavulanic acid, cotrimoxazole, and quinolones was more present in these isolates; whereas, third and fourth generation cephalosporins, carbapenems, amikacin, tigecycline, and colistin were highly active. Moreover, high diversity of virulence factors has been found, with sfa, fimH, and gad the most frequently detected genes. Interestingly, 26.6% of the E. coli isolates were high biofilm-producers. Altogether, our data characterized for the first time E. coli isolates associated with biliary tract infections in terms of genomic relationship, resistome, and virulome.


Sign in / Sign up

Export Citation Format

Share Document