scholarly journals Study of the Yahoo-yahoo Hash-tag Tweets Using Sentiment Analysis and Opinion Mining Algorithms

Author(s):  
Adebayo Abayomi-Alli ◽  
Olusola Abayomi-Alli ◽  
Sanjay Misra ◽  
Luis Fernandez-Sanz

Abstract BackgroundSocial media opinion has become a medium to quickly access large, valuable, and rich details of information on any subject matter within a short period. Twitter being a social microblog site, generate over 330 million tweets monthly across different countries. Analyzing trending topics on Twitter presents opportunities to extract meaningful insight into different opinions on various issues.AimThis study aims to gain insights into the trending yahoo-yahoo topic on Twitter using content analysis of selected historical tweets.MethodologyThe widgets and workflow engine in the Orange Data mining toolbox were employed for all the text mining tasks. 5500 tweets were collected from Twitter using the 'yahoo yahoo' hashtag. The corpus was pre-processed using a pre-trained tweet tokenizer, Valence Aware Dictionary for Sentiment Reasoning (VADER) was used for the sentiment and opinion mining, Latent Dirichlet Allocation (LDA) and Latent Semantic Indexing (LSI) was used for topic modeling. In contrast, Multidimensional scaling (MDS) was used to visualize the modeled topics. ResultsResults showed that "yahoo" appeared in the corpus 9555 times, 175 unique tweets were returned after duplicate removal. Contrary to expectation, Spain had the highest number of participants tweeting on the 'yahoo yahoo' topic within the period. The result of Vader sentiment analysis returned 35.85%, 24.53%, 15.09%, and 24.53%, negative, neutral, no-zone, and positive sentiment tweets, respectively. The word yahoo was highly representative of the LDA topics 1, 3, 4, 6, and LSI topic 1.ConclusionIt can be concluded that emojis are even more representative of the sentiments in tweets faster than the textual contents. Also, despite popular belief, a significant number of youths regard cybercrime as a detriment to society.

2019 ◽  
Author(s):  
Νεκταρία Πόθα

Η περιοχή της ανάλυσης συγγραφέα (Authorship Analysis) αποσκοπεί στην άντληση πληροφοριών σχετικά με τους συγγραφείς ψηφιακών κειμένων. Συνδέεται άμεσα με πολλές εφαρμογές καθώς είναι εφικτό να χρησιμοποιηθεί για την ανάλυση οποιουδήποτε είδους(genre) κειμένων: λογοτεχνικών έργων, άρθρων εφημερίδων, αναρτήσεις σε κοινωνικά δίκτυα κλπ. Οι περιοχές εφαρμογών της τεχνολογίας αυτής διακρίνονται σε φιλολογικές (humanities),(π.χ. ποιος είναι ο συγγραφέας ενός λογοτεχνικού έργου που εκδόθηκε ανώνυμα, ποιος είναι ο συγγραφέας έργων που έχουν εκδοθεί με ψευδώνυμο, επαλήθευση της πατρότητας λογοτεχνικών έργων γνωστών συγγραφέων κτλ.), εγκληματολογικές (forensics) (π.χ. εύρεση υφολογικών ομοιοτήτων μεταξύ προκηρύξεων τρομοκρατικών ομάδων, διερεύνηση αυθεντικότητας σημειώματος αυτοκτονίας, αποκάλυψη πολλαπλών λογαριασμών χρήστη σε κοινωνικά δίκτυα που αντιστοιχούν στο ίδιο άτομο κτλ.) και στον τομέα της ασφάλειας του κυβερνοχώρου (cyber-security) (π.χ. εύρεση υφολογικών ομοιοτήτων μεταξύ χρηστών πολλαπλών ψευδωνύμων).Θεμελιώδες ερευνητικό πεδίο της ανάλυσης συγγραφέα αποτελεί η επαλήθευση συγγραφέα (author verification), όπου δεδομένου ενός συνόλου κειμένων (σε ηλεκτρονική μορφή) από τον ίδιο συγγραφέα (υποψήφιος συγγραφέας) καλούμαστε να αποφασίσουμε αν ένα άλλο κείμενο (άγνωστης ή αμφισβητούμενης συγγραφικής προέλευσης) έχει γραφτεί από τον συγγραφέα αυτόν ή όχι. Η επαλήθευση συγγραφέα έχει αποκτήσει ιδιαίτερο ενδιαφέρον τα τελευταία χρόνια κυρίως λόγω των πειραματικών αξιολογήσεων PAN@CLEF. Συγκεκριμένα, από το 2013 εως το 2015 οι διαγωνισμοί PAN είχαν εστιάσει στο πεδίο της επαλήθευσης συγγραφέα παρέχοντας ένα καλά οργανωμένο σύνολο δεδομένων (PAN corpora) και συγκεντρώνοντας πλήθος μεθόδων για τον σκοπό αυτό. Ωστόσο, το περιθώριο λάθους είναι αρκετά μεγάλο εφόσον η επίδοση των μεθόδων εξαρτάται από πολλαπλούς παράγοντες όπως το μήκος των κειμένων, η θεματική συνάφεια μεταξύ των κειμένων και η υφολογική συνάφεια μεταξύ των κειμένων. Η πιο απαιτητική περίπτωση προκύπτει όταν τα κείμενα γνωστού συγγραφέα ανήκουν σε ένα είδος (π.χ. blogs ή μηνύματα email) ενώ το προς διερεύνηση κείμενο ανήκει σε άλλο είδος (π.χ., tweet ή άρθρο εφημερίδας). Επιπλέον, αν τα κείμενα του γνωστού συγγραφέα με το προς διερεύνηση κείμενο δεν συμφωνούν ως προς τη θεματική περιοχή (topic) (π.χ. τα γνωστά κείμενα σχετίζονται με εξωτερική πολιτική και το άγνωστο με πολιτιστικά θέματα) η επίδοση των τρεχόντων μεθόδων επαλήθευσης συγγραφέα είναι ιδιαίτερα χαμηλή. Στόχος της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη αποδοτικών και εύρωστων μεθόδων επαλήθευσης συγγραφέα που είναι ικανές να χειριστούν ακόμα και τέτοιες περίπλοκες περιπτώσεις. Προς την κατεύθυνση αυτή, παρουσιάζουμε βελτιωμένες μεθόδους επαλήθευσης συγγραφέα και συστηματικά εξετάζουμε την αποδοτικότητα τους σε διάφορα σύνολα δεδομένων αναφοράς (PAN datasets και Enron Data). Αρχικά, προτείνουμε δύο βελτιωμένους αλγόριθμους, ο ένας ακολουθεί το παράδειγμα όπου όλα τα διαθέσιμα δείγματα γραφής του υποψηφίου συγγραφέα αντιμετωπίζονται μεμονωμένα, ως ξεχωριστές αναπαραστάσεις (instance-based paradigm) και ο άλλος είναι βασισμένος στο παράδειγμα όπου όλα τα δείγματα γραφής του υποψηφίου συγγραφέα συννενώνονται και εξάγεται ένα ενιαίο κείμενο, μία μοναδική αναπαράσταση (profile-based paradigm), οι οποίες επιτυγχανουν υψηλότερη απόδοση σε σύνολα δεδομένων που καλύπτουν ποικιλία γλωσσώνν (Αγγλικά, Ελληνικά, Ισπανικά, Ολλανδικά) και κειμενικών ειδών (άρθρα, κριτικές, νουβέλες, κ.ά.) σε σύγκριση με την τεχνολογία αιχμής (state-of-the-art) στον τομέα της επαλήθευσης. Είναι σημαντικό να τονίσουμε ότι οι προτεινόμενες μέθοδοι επωφελούνται σημαντικά από τη διαθεσιμότητα πολλαπλών δειγμάτων κειμένων του υποψηφίου συγγραφέα και παραμένουν ιδιαίτερα ανθεκτικές/ανταγωνιστικές όταν το μήκος των κειμένων είναι περιορισμένο. Επιπλέον, διερευνούμε τη χρησιμότητα της εφαρμογής μοντελοποίησης θέματος (topic modeling) στην επαλήθευση συγγραφέα. Συγκεκριμένα, διεξάγουμε μια συστηματική μελέτη για να εξετάσουμε εάν οι τεχνικές μοντελοποίησης θέματος επιτυγχάνουν την βελτίωση της απόδοσης των πιο βασικών κατηγοριών μεθόδων επαλήθευσης καθώς και ποια συγκεκριμένη τεχνική μοντελοποίησης θέματος είναι η πλέον κατάλληλη για κάθε ένα από τα παραδείγματα μεθόδων επαλήθευσης. Για το σκοπό αυτό, συνδυάζουμε γνωστές μεθόδους μοντελοποίσης, Latent Semantic Indexing (LSI) και Latent Dirichlet Allocation, (LDA), με διάφορες μεθόδους επαλήθευσης συγγραφέα, οι οποίες καλύπτουν τις βασικές κατηγορίες στην περιοχή αυτή, δηλαδή την ενδογενή(intrinsic), που αντιμετωπίζει το πρόβλημα επαλήθευσης ως πρόβλημα μίας κλάσης, και την εξωγενή (extrinsic), που μετατρέπει το πρόβλημα επαλήθευσης σε πρόβλημα δύο κλάσεων, σε συνδυασμό με τις profile-based και instance-based προσεγγίσεις.Χρησιμοποιώντας πολλαπλά σύνολα δεδομένων αξιολόγησης επιδεικνύουμε ότι η LDA τεχνική συνδυάζεται καλύτερα με τις εξωγενείς μεθόδους ενώ η τεχνική LSI αποδίδει καλύτερα με την πιο αποδοτικής ενδογενή μέθοδο. Επιπλέον, οι τεχνικές μοντελοποίησης θέματος φαίνεται να είναι πιο αποτελεσματικές όταν εφαρμόζονται σε μεθόδους που ακολουθούν το profile-based παράδειγμα και η αποδοτικότητα τους ενισχύεται όταν η πληροφορία των latent topics εξάγεται από ένα ενισχυμένο σύνολο κειμένων (εμπλουτισμένο με επιπλέον κείμενα τα οποία έχουν συλλεχθεί από εξωτερικές πηγές (π.χ web) και παρουσιάζουν σημαντική θεματική συνάφεια με το αρχικό υπό εξέταση σύνολο δεδομένων. Η σύγκριση των αποτελεσμάτων μας με την τεχνολογία αιχμής του τομέα της επαλήθευσης, επιδεικνύει την δυναμική των προτεινόμενων μεθόδων. Επίσης, οι προτεινόμενες εξωγενείς μέθοδοι είναι ιδιαίτερα ανταγωνιστικές στην περίπτωση που χρησιμοποιηθούν αγνώστου είδους εξωγενή κείμενα. Σε ορισμένες από τις σχετικές μελέτες, υπάρχουν ενδείξεις ότι ετερογενή σύνολα(heterogeneous ensembles) μεθόδων επαλήθευσης μπορούν να παρέχουν πολύ αξιόπιστες λύσεις, καλύτερες από κάθε ατομικό μοντέλο επαλήθευσης ξεχωριστά. Ωστόσο, έχουν εξεταστεί μόνο πολύ απλά μοντέλα συνόλων έως τώρα που συνδυάζουν σχετικά λίγες βασικές μεθόδους. Προσπαθώντας να καλύψουμε το κενό αυτό, θεωρούμε ένα μεγάλο σύνολο βασικών μοντέλων επαλήθευσης (συνολικά 47 μοντέλα) που καλύπτουν τα κύρια παραδείγματα /κατηγορίες μεθόδων στην περιοχή αυτή και μελετούμε τον τρόπο με τον οποίο μπορούν να συνδυαστούν ώστε να δημιουργηθεί ένα αποτελεσματικό σύνολο. Με αυτό τον τρόπο, προτείνουμε ένα απλό σύνολο ομαδοποίησης στοίβας (stacking ensemble) καθώς και μια προσέγγιση που βασίζεται στην δυναμική επιλογή μοντέλων για καθεμία υπό εξέταση περίπτωση επαλήθευσης συγγραφέα ξεχωριστά. Τα πειραματικά αποτελέσματα σε πολλαπλά σύνολα δεδομένων επιβεβαιώνουν την καταλληλότητα των προτεινόμενων μεθόδων επιδεικνύοντας την αποτελεσματικότητα τους. Η βελτίωση της επίδοσης που επιτυγχάνουν τα καλύτερα από τα αναφερόμενα μοντέλα σε σχέση με την τρέχουσα τεχνολογία αιχμής είναι περισσότερο από 10%.


Author(s):  
Ajeet Ram Pathak ◽  
Manjusha Pandey ◽  
Siddharth Rautaray

Background: The large amount of data emanated from social media platforms need scalable topic modeling in order to get current trends and themes of events discussed on such platforms. Topic modeling play crucial role in many natural language processing applications like sentiment analysis, recommendation systems, event tracking, summarization, etc. Objectives: The aim of the proposed work is to adaptively extract the dynamically evolving topics over streaming data, and infer the current trends and get the notion of trend of topics over time. Because of various world level events, many uncorrelated streaming channels tend to start discussion on similar topics. We aim to find the effect of uncorrelated streaming channels on topic modeling when they tend to start discussion on similar topics. Method: An adaptive framework for dynamic and temporal topic modeling using deep learning has been put forth in this paper. The framework approximates online latent semantic indexing constrained by regularization on streaming data using adaptive learning method. The framework is designed using deep layers of feedforward neural network. Results: This framework supports dynamic and temporal topic modeling. The proposed approach is scalable to large collection of data. We have performed exploratory data analysis and correspondence analysis on real world Twitter dataset. Results state that our approach works well to extract topic topics associated with a given hashtag. Given the query, the approach is able to extract both implicit and explicit topics associated with the terms mentioned in the query. Conclusion: The proposed approach is a suitable solution for performing topic modeling over Big Data. We are approximating the Latent Semantic Indexing model with regularization using deep learning with differentiable ℓ1 regularization, which makes the model work on streaming data adaptively at real-time. The model also supports the extraction of aspects from sentences based on interrelation of topics and thus, supports aspect modeling in aspect-based sentiment analysis.


2020 ◽  
Vol 5 (1) ◽  
pp. 86-99
Author(s):  
Runbin Xie ◽  
Samuel Kai Wah Chu ◽  
Dickson Kak Wah Chiu ◽  
Yangshu Wang

AbstractIt is necessary and important to understand public responses to crises, including disease outbreaks. Traditionally, surveys have played an essential role in collecting public opinion, while nowadays, with the increasing popularity of social media, mining social media data serves as another popular tool in opinion mining research. To understand the public response to COVID-19 on Weibo, this research collects 719,570 Weibo posts through a web crawler and analyzes the data with text mining techniques, including Latent Dirichlet Allocation (LDA) topic modeling and sentiment analysis. It is found that, in response to the COVID-19 outbreak, people learn about COVID-19, show their support for frontline warriors, encourage each other spiritually, and, in terms of taking preventive measures, express concerns about economic and life restoration, and so on. Analysis of sentiments and semantic networks further reveals that country media, as well as influential individuals and “self-media,” together contribute to the information spread of positive sentiment.


2019 ◽  
Vol 8 (3) ◽  
pp. 6634-6643 ◽  

Opinion mining and sentiment analysis are valuable to extract the useful subjective information out of text documents. Predicting the customer’s opinion on amazon products has several benefits like reducing customer churn, agent monitoring, handling multiple customers, tracking overall customer satisfaction, quick escalations, and upselling opportunities. However, performing sentiment analysis is a challenging task for the researchers in order to find the users sentiments from the large datasets, because of its unstructured nature, slangs, misspells and abbreviations. To address this problem, a new proposed system is developed in this research study. Here, the proposed system comprises of four major phases; data collection, pre-processing, key word extraction, and classification. Initially, the input data were collected from the dataset: amazon customer review. After collecting the data, preprocessing was carried-out for enhancing the quality of collected data. The pre-processing phase comprises of three systems; lemmatization, review spam detection, and removal of stop-words and URLs. Then, an effective topic modelling approach Latent Dirichlet Allocation (LDA) along with modified Possibilistic Fuzzy C-Means (PFCM) was applied to extract the keywords and also helps in identifying the concerned topics. The extracted keywords were classified into three forms (positive, negative and neutral) by applying an effective machine learning classifier: Convolutional Neural Network (CNN). The experimental outcome showed that the proposed system enhanced the accuracy in sentiment analysis up to 6-20% related to the existing systems.


2021 ◽  
Author(s):  
Shimon Ohtani

Abstract The importance of biodiversity conservation is gradually being recognized worldwide, and 2020 was the final year of the Aichi Biodiversity Targets formulated at the 10th Conference of the Parties to the Convention on Biological Diversity (COP10) in 2010. Unfortunately, the majority of the targets were assessed as unachievable. While it is essential to measure public awareness of biodiversity when setting the post-2020 targets, it is also a difficult task to propose a method to do so. This study provides a diachronic exploration of the discourse on “biodiversity” from 2010 to 2020, using Twitter posts, in combination with sentiment analysis and topic modeling, which are commonly used in data science. Through the aggregation and comparison of n-grams, the visualization of eight types of emotional tendencies using the NRC emotion lexicon, the construction of topic models using Latent Dirichlet allocation (LDA), and the qualitative analysis of tweet texts based on these models, I was able to classify and analyze unstructured tweets in a meaningful way. The results revealed the evolution of words used with “biodiversity” on Twitter over the past decade, the emotional tendencies behind the contexts in which “biodiversity” has been used, and the approximate content of tweet texts that have constituted topics with distinctive characteristics. While the search for people's awareness through SNS analysis still has many limitations, it is undeniable that important suggestions can be obtained. In order to further refine the research method, it will be essential to improve the skills of analysts and accumulate research examples as well as to advance data science.


Explosion of Web 2.0 had made different social media platforms like Facebook, Twitter, Blogs, etc a data hub for the task of Data Mining. Sentiment Analysis or Opinion mining is an automated process of understanding an opinion expressed by customers. By using Data mining techniques, sentiment analysis helps in determining the polarity (Positive, Negative & Neutral) of views expressed by the end user. Nowadays there are terabytes of data available related to any topic then it can be advertising, politics and Survey Companies, etc. CSAT (Customer Satisfaction) is the key factor for this survey companies. In this paper, we used topic modeling by incorporating a LDA algorithm for finding the topics related to social media. We have used datasets of 900 records for analysis. By analysis, we found three important topics from Survey/Response dataset, which are Customers, Agents & Product/Services. Results depict the CSAT score according to Positive, Negative and Neutral response. We used topic modeling which is a statistical modeling technique. Topic modeling is a technique for categorization of text documents into different topics. This approach helps in better summarization of data according to the topic identification and depiction of polarity classification of sentiments expressed.


Sign in / Sign up

Export Citation Format

Share Document