scholarly journals Fast Deep Learning Computer-Aided Diagnosis against the Novel COVID-19 pandemic from Digital Chest X-ray Images

Author(s):  
Mugahed A. Al-antari ◽  
Cam-Hao Hua ◽  
Sungyoung Lee

Abstract Background and Objective: The novel coronavirus 2019 (COVID-19) is a harmful lung disease that rapidly attacks people worldwide. At the end of 2019, COVID-19 was discovered as mysterious lung disease in Wuhan, Hubei province of China. World health organization (WHO) declared the coronavirus outbreak a pandemic in the second week of March 2020. Simultaneous deep learning detection and classification of COVID-19 from the entire digital X-ray images is the key to efficiently assist patients and physicians for a fast and accurate diagnosis.Methods: In this paper, a deep learning computer-aided diagnosis (CAD) based on the YOLO predictor is proposed to simultaneously detect and diagnose COVID-19 among the other eight lung diseases: Atelectasis, Infiltration, Pneumothorax, Mass, Effusion, Pneumonia, Cardiomegaly, and Nodule. The proposed CAD system is assessed via five-fold tests for multi-class prediction problem using two different databases of chest X-ray images: COVID-19 and ChestX-ray8. The proposed CAD system is trained using an annotated training set of 50,490 chest X-ray images.Results: The suspicious regions of COVID-19 from the entire X-ray images are simultaneously detected and classified end-to-end via the proposed CAD predictor achieving overall detection and classification accuracies of 96.31% and 97.40%, respectively. The most testing images of COVID-19 and other lunge diseases are correctly predicted achieving intersection over union (IoU) with their GTs greater than 90%. Applying deep learning regularizers of data balancing and augmentation improve the diagnostic performance by 6.64% and 12.17% in terms of overall accuracy and F1-score, respectively. Meanwhile, the proposed CAD system presents its feasibility to diagnose the individual chest X-ray image within 0.009 second. Thus, the presented CAD system could predict 108 frames/second (FPS) at the real-time of prediction.Conclusion: The proposed deep learning CAD system shows its capability and reliability to achieve promising COVID-19 diagnostic performance among all other lung diseases. The proposed deep learning model seems reliable to assist health care systems, patients, and physicians in their practical validations.

Author(s):  
J. Juditha Mercina ◽  
J. Madhumathi ◽  
V. Priyanga ◽  
M. Deva Priya

Lungs play an important role in human respiratory system. There are diseases that affect the functioning of lungs. To analyse lung diseases in the chest region using X-ray based Computer-Aided Diagnosis (CAD) system, it is necessary to determine the lung regions subject to analysis. In this paper, an intelligent system is proposed for lung disease detection. In this paper, Interstitial Lung Disease (ILD) patterns are classified using Convolutional Neural Networks (CNN). The proposed system involves five convolutional layers and three dense layers. The performance of the classification demonstrates the potential of CNN in analysing lung patterns.


2020 ◽  
Author(s):  
Mugahed A. Al-antari ◽  
Cam-Hao Hua ◽  
Sungyoung Lee ◽  
Jaehun Bang

Abstract Coronavirus disease 2019 (COVID-19) is a novel harmful respiratory disease that has rapidly spread worldwide. At the end of 2019, COVID-19 emerged as a previously unknown respiratory disease in Wuhan, Hubei Province, China. The world health organization (WHO) declared the coronavirus outbreak a pandemic in the second week of March 2020. Simultaneous deep learning detection and classification of COVID-19 based on the full resolution of digital X-ray images is the key to efficiently assisting patients by enabling physicians to reach a fast and accurate diagnosis decision. In this paper, a simultaneous deep learning computer-aided diagnosis (CAD) system based on the YOLO predictor is proposed that can detect and diagnose COVID-19, differentiating it from eight other respiratory diseases: atelectasis, infiltration, pneumothorax, masses, effusion, pneumonia, cardiomegaly, and nodules. The proposed CAD system was assessed via five-fold tests for the multi-class prediction problem using two different databases of chest X-ray images: COVID-19 and ChestX-ray8. The proposed CAD system was trained with an annotated training set of 50,490 chest X-ray images. The regions on the entire X-ray images with lesions suspected of being due to COVID-19 were simultaneously detected and classified end-to-end via the proposed CAD predictor, achieving overall detection and classification accuracies of 96.31% and 97.40%, respectively. Most test images from patients with confirmed COVID-19 and other respiratory diseases were correctly predicted, achieving average intersection over union (IoU) greater than 90%. Applying deep learning regularizers of data balancing and augmentation improved the COVID-19 diagnostic performance by 6.64% and 12.17% in terms of the overall accuracy and the F1-score, respectively. It is feasible to achieve a diagnosis based on individual chest X-ray images with the proposed CAD system within 0.0093 s. Thus, the CAD system presented in this paper can make a prediction at the rate of 108 frames/s (FPS), which is close to real-time. The proposed deep learning CAD system can reliably differentiate COVID-19 from other respiratory diseases. The proposed deep learning model seems to be a reliable tool that can be used to practically assist health care systems, patients, and physicians.


2019 ◽  
Vol 9 (4) ◽  
pp. 186-193
Author(s):  
Lei Xu ◽  
Junling Gao ◽  
Quan Wang ◽  
Jichao Yin ◽  
Pengfei Yu ◽  
...  

Background: Computer-aided diagnosis (CAD) systems are being applied to the ultrasonographic diagnosis of malignant thyroid nodules, but it remains controversial whether the systems add any accuracy for radiologists. Objective: To determine the accuracy of CAD systems in diagnosing malignant thyroid nodules. Methods: PubMed, EMBASE, and the Cochrane Library were searched for studies on the diagnostic performance of CAD systems. The diagnostic performance was assessed by pooled sensitivity and specificity, and their accuracy was compared with that of radiologists. The present systematic review was registered in PROSPERO (CRD42019134460). Results: Nineteen studies with 4,781 thyroid nodules were included. Both the classic machine learning- and the deep learning-based CAD system had good performance in diagnosing malignant thyroid nodules (classic machine learning: sensitivity 0.86 [95% CI 0.79–0.92], specificity 0.85 [95% CI 0.77–0.91], diagnostic odds ratio (DOR) 37.41 [95% CI 24.91–56.20]; deep learning: sensitivity 0.89 [95% CI 0.81–0.93], specificity 0.84 [95% CI 0.75–0.90], DOR 40.87 [95% CI 18.13–92.13]). The diagnostic performance of the deep learning-based CAD system was comparable to that of the radiologists (sensitivity 0.87 [95% CI 0.78–0.93] vs. 0.87 [95% CI 0.85–0.89], specificity 0.85 [95% CI 0.76–0.91] vs. 0.87 [95% CI 0.81–0.91], DOR 40.12 [95% CI 15.58–103.33] vs. DOR 44.88 [95% CI 30.71–65.57]). Conclusions: The CAD systems demonstrated good performance in diagnosing malignant thyroid nodules. However, experienced radiologists may still have an advantage over CAD systems during real-time diagnosis.


10.2196/18089 ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. e18089
Author(s):  
Ryoungwoo Jang ◽  
Namkug Kim ◽  
Miso Jang ◽  
Kyung Hwa Lee ◽  
Sang Min Lee ◽  
...  

Background Computer-aided diagnosis on chest x-ray images using deep learning is a widely studied modality in medicine. Many studies are based on public datasets, such as the National Institutes of Health (NIH) dataset and the Stanford CheXpert dataset. However, these datasets are preprocessed by classical natural language processing, which may cause a certain extent of label errors. Objective This study aimed to investigate the robustness of deep convolutional neural networks (CNNs) for binary classification of posteroanterior chest x-ray through random incorrect labeling. Methods We trained and validated the CNN architecture with different noise levels of labels in 3 datasets, namely, Asan Medical Center-Seoul National University Bundang Hospital (AMC-SNUBH), NIH, and CheXpert, and tested the models with each test set. Diseases of each chest x-ray in our dataset were confirmed by a thoracic radiologist using computed tomography (CT). Receiver operating characteristic (ROC) and area under the curve (AUC) were evaluated in each test. Randomly chosen chest x-rays of public datasets were evaluated by 3 physicians and 1 thoracic radiologist. Results In comparison with the public datasets of NIH and CheXpert, where AUCs did not significantly drop to 16%, the AUC of the AMC-SNUBH dataset significantly decreased from 2% label noise. Evaluation of the public datasets by 3 physicians and 1 thoracic radiologist showed an accuracy of 65%-80%. Conclusions The deep learning–based computer-aided diagnosis model is sensitive to label noise, and computer-aided diagnosis with inaccurate labels is not credible. Furthermore, open datasets such as NIH and CheXpert need to be distilled before being used for deep learning–based computer-aided diagnosis.


2020 ◽  
Author(s):  
Ryoungwoo Jang ◽  
Namkug Kim ◽  
Miso Jang ◽  
Kyung Hwa Lee ◽  
Sang Min Lee ◽  
...  

BACKGROUND Computer-aided diagnosis on chest x-ray images using deep learning is a widely studied modality in medicine. Many studies are based on public datasets, such as the National Institutes of Health (NIH) dataset and the Stanford CheXpert dataset. However, these datasets are preprocessed by classical natural language processing, which may cause a certain extent of label errors. OBJECTIVE This study aimed to investigate the robustness of deep convolutional neural networks (CNNs) for binary classification of posteroanterior chest x-ray through random incorrect labeling. METHODS We trained and validated the CNN architecture with different noise levels of labels in 3 datasets, namely, Asan Medical Center-Seoul National University Bundang Hospital (AMC-SNUBH), NIH, and CheXpert, and tested the models with each test set. Diseases of each chest x-ray in our dataset were confirmed by a thoracic radiologist using computed tomography (CT). Receiver operating characteristic (ROC) and area under the curve (AUC) were evaluated in each test. Randomly chosen chest x-rays of public datasets were evaluated by 3 physicians and 1 thoracic radiologist. RESULTS In comparison with the public datasets of NIH and CheXpert, where AUCs did not significantly drop to 16%, the AUC of the AMC-SNUBH dataset significantly decreased from 2% label noise. Evaluation of the public datasets by 3 physicians and 1 thoracic radiologist showed an accuracy of 65%-80%. CONCLUSIONS The deep learning–based computer-aided diagnosis model is sensitive to label noise, and computer-aided diagnosis with inaccurate labels is not credible. Furthermore, open datasets such as NIH and CheXpert need to be distilled before being used for deep learning–based computer-aided diagnosis.


2021 ◽  
Vol 1 (1) ◽  
pp. 12-18
Author(s):  
Yew Fai Cheah

Chest X-ray images can be used to detect lung diseases such as COVID-19, viral pneumonia, and tuberculosis (TB). These diseases have similar patterns and diagnoses, making it difficult for clinicians and radiologists to differentiate between them. This paper uses convolutional neural networks (CNNs) to diagnose lung disease using chest X-ray images obtained from online sources. The classification task is separated into three and four classes, with COVID-19, normal, TB, and viral pneumonia, while the three-class problem excludes the normal lung. During testing, AlexNet and ResNet-18 gave promising results, scoring more than 95% accuracy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mu Sook Lee ◽  
Yong Soo Kim ◽  
Minki Kim ◽  
Muhammad Usman ◽  
Shi Sub Byon ◽  
...  

AbstractWe examined the feasibility of explainable computer-aided detection of cardiomegaly in routine clinical practice using segmentation-based methods. Overall, 793 retrospectively acquired posterior–anterior (PA) chest X-ray images (CXRs) of 793 patients were used to train deep learning (DL) models for lung and heart segmentation. The training dataset included PA CXRs from two public datasets and in-house PA CXRs. Two fully automated segmentation-based methods using state-of-the-art DL models for lung and heart segmentation were developed. The diagnostic performance was assessed and the reliability of the automatic cardiothoracic ratio (CTR) calculation was determined using the mean absolute error and paired t-test. The effects of thoracic pathological conditions on performance were assessed using subgroup analysis. One thousand PA CXRs of 1000 patients (480 men, 520 women; mean age 63 ± 23 years) were included. The CTR values derived from the DL models and diagnostic performance exhibited excellent agreement with reference standards for the whole test dataset. Performance of segmentation-based methods differed based on thoracic conditions. When tested using CXRs with lesions obscuring heart borders, the performance was lower than that for other thoracic pathological findings. Thus, segmentation-based methods using DL could detect cardiomegaly; however, the feasibility of computer-aided detection of cardiomegaly without human intervention was limited.


Author(s):  
Tarunika kumaraguru ◽  
P. Abirami ◽  
K.M. Darshan ◽  
S.P. Angeline Kirubha ◽  
S. Latha ◽  
...  
Keyword(s):  
X Ray ◽  

Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 694
Author(s):  
Xuejiao Pang ◽  
Zijian Zhao ◽  
Ying Weng

At present, the application of artificial intelligence (AI) based on deep learning in the medical field has become more extensive and suitable for clinical practice compared with traditional machine learning. The application of traditional machine learning approaches to clinical practice is very challenging because medical data are usually uncharacteristic. However, deep learning methods with self-learning abilities can effectively make use of excellent computing abilities to learn intricate and abstract features. Thus, they are promising for the classification and detection of lesions through gastrointestinal endoscopy using a computer-aided diagnosis (CAD) system based on deep learning. This study aimed to address the research development of a CAD system based on deep learning in order to assist doctors in classifying and detecting lesions in the stomach, intestines, and esophagus. It also summarized the limitations of the current methods and finally presented a prospect for future research.


Sign in / Sign up

Export Citation Format

Share Document