scholarly journals New Identified Anthocyanins from Sudanese Roselle:  Potential Candidates for inhibition of Xanthine Oxidase

Author(s):  
Arwa El-Naeem ◽  
Sahar Abdalla ◽  
Ibrahim Ahmed

Abstract This study aims to identify anthocyanin pigments in Sudanese roselle and examine their inhibitory activity toward xanthine oxidase (XO) enzyme via in silico docking approach. A number of four samples of Sudanese roselle (red and white) from different regions of Sudan were investigated by high sensitive technique, i.e. LC-MS to identify anthocyanins. Four anthocyanins were identified in all samples; delphinidin-3-glucoside (Dp-3-glu), cyanidin-3-sambubioside (Cy-3-sam), pelargonidin chloride (Pg Chloride), and petuinidin-3-glucoside (Pt-3-glu); in addition to one flavanol; gossypetin (Goss). The anthocyanins of the white samples are suggested to be presented in the yellowish or colorless pseudo base structures. The identified anthocyanins were tested against the inhibition toward xanthine oxidase via molecular docking. All anthocyanins were found to be excellent XO inhibitors superior to the most recent commercially used hyperuricemia drug; i.e. topiroxostat. The binding energies of the complexes (ligand-XO) are lower than the energy of the topiroxostat-XO complex. The binding energies order is: pt-3- dp-3-glu > cy-3-sam > goss > pg chloride. According to our investigation, roselle anthocyanins are considered as good potential future XO-inhibitors drugs; and promising candidates to treat several related diseases.

2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


Author(s):  
MUTHUSWAMY UMAMAHESWARI ◽  
Preetha Prabhu ◽  
KUPPUSAMY ASOKKUMAR ◽  
THIRUMALAISAMY SIVASHANMUGAM ◽  
Varadharajan Subhadradevi ◽  
...  

2021 ◽  
Vol 28 (2) ◽  
pp. 64-69
Author(s):  
A.M. Alhassan ◽  
I. Malami

Aldose reductase, a key enzyme of the polyol pathway catalyses NADPH-dependent reduction of glucose to sorbitol. Increased activity of this enzyme is considered a major factor contributing to the development of diabetic complications hence could be an important target in the treatment of these complications. In this work, a database of sesquiterpenes was prepared and screened for their drug-like properties based on the Lipinski’s rule of 5. The co-crystallised structure of aldose reductase was obtained from the Protein Databank and prepared for docking. In silico docking experiments was performed on Autodock tools using 198 sesquiterpene lactones that passed screening, and compounds with the lowest binding energy and favourable binding interactions were selected for molecular docking simulation. Six of the best ranking compounds selected had binding energies ranging from–11.96 Kcal/mol to -9.45 Kcal/mol  and were comparable to the energy of the standard inhibitor Idd594 used in the study. They also show good complementarity in their binding to the residues of the binding pocket. The results suggest that dehydrooopodin (1), 11(S),13-dihydrolactucopicrin (2), and Chrysanin (3) offered potential inhibitory activities toward aldose reductase and may serve as lead compounds for in vivo validation as aldose reductase inhibitors. Keywords: Sesquiterpene lactones, Aldose reductase, Binding energy, Molecular docking, Autodock


2021 ◽  
Vol 22 (6) ◽  
pp. 2977
Author(s):  
Ahmed Abdelaal Ahmed Mahmoud M. Alkhatip ◽  
Michail Georgakis ◽  
Lucio R. Montero Valenzuela ◽  
Mohamed Hamza ◽  
Ehab Farag ◽  
...  

SARS-CoV-2 currently lacks effective first-line drug treatment. We present promising data from in silico docking studies of new Methisazone compounds (modified with calcium, Ca; iron, Fe; magnesium, Mg; manganese, Mn; or zinc, Zn) designed to bind more strongly to key proteins involved in replication of SARS-CoV-2. In this in silico molecular docking study, we investigated the inhibiting role of Methisazone and the modified drugs against SARS-CoV-2 proteins: ribonucleic acid (RNA)-dependent RNA polymerase (RdRp), spike protein, papain-like protease (PlPr), and main protease (MPro). We found that the highest binding interactions were found with the spike protein (6VYB), with the highest overall binding being observed with Mn-bound Methisazone at −8.3 kcal/mol, followed by Zn and Ca at −8.0 kcal/mol, and Fe and Mg at −7.9 kcal/mol. We also found that the metal-modified Methisazone had higher affinity for PlPr and MPro. In addition, we identified multiple binding pockets that could be singly or multiply occupied on all proteins tested. The best binding energy was with Mn–Methisazone versus spike protein, and the largest cumulative increases in binding energies were found with PlPr. We suggest that further studies are warranted to identify whether these compounds may be effective for treatment and/or prophylaxis.


Author(s):  
Sisir Nandi ◽  
Mohit Kumar ◽  
Mridula Saxena ◽  
Anil Kumar Saxena

Background: The novel coronavirus disease (COVID-19) is caused by a new strain (SARS-CoV-2) erupted in 2019. Nowadays, it is a great threat that claims uncountable lives worldwide. There is no specific chemotherapeutics developed yet to combat COVID-19. Therefore, scientists have been devoted in the quest of the medicine that can cure COVID- 19. Objective: Existing antivirals such as ASC09/ritonavir, lopinavir/ritonavir with or without umifenovir in combination with antimalarial chloroquine or hydroxychloroquine have been repurposed to fight the current coronavirus epidemic. But exact biochemical mechanisms of these drugs towards COVID-19 have not been discovered to date. Method: In-silico molecular docking can predict the mode of binding to sort out the existing chemotherapeutics having a potential affinity towards inhibition of the COVID-19 target. An attempt has been made in the present work to carry out docking analyses of 34 drugs including antivirals and antimalarials to explain explicitly the mode of interactions of these ligands towards the COVID-19protease target. Results: 13 compounds having good binding affinity have been predicted towards protease binding inhibition of COVID-19. Conclusion: Our in silico docking results have been confirmed by current reports from clinical settings through the citation of suitable experimental in vitro data available in the published literature.


2019 ◽  
Vol 15 (2) ◽  
pp. 186-195 ◽  
Author(s):  
Samridhi Thakral ◽  
Vikramjeet Singh

Background: Postprandial hyperglycemia can be reduced by inhibiting major carbohydrate hydrolyzing enzymes, such as α-glucosidase and α-amylase which is an effective approach in both preventing and treating diabetes. Objective: The aim of this study was to synthesize a series of 2,4-dichloro-5-[(N-aryl/alkyl)sulfamoyl] benzoic acid derivatives and evaluate α-glucosidase and α-amylase inhibitory activity along with molecular docking and in silico ADMET property analysis. Method: Chlorosulfonation of 2,4-dichloro benzoic acid followed by reaction with corresponding anilines/amines yielded 2,4-dichloro-5-[(N-aryl/alkyl)sulfamoyl]benzoic acid derivatives. For evaluating their antidiabetic potential α-glucosidase and α-amylase inhibitory assays were carried out. In silico molecular docking studies of these compounds were performed with respect to these enzymes and a computational study was also carried out to predict the drug-likeness and ADMET properties of the title compounds. Results: Compound 3c (2,4-dichloro-5-[(2-nitrophenyl)sulfamoyl]benzoic acid) was found to be highly active having 3 fold inhibitory potential against α-amylase and 5 times inhibitory activity against α-glucosidase in comparison to standard drug acarbose. Conclusion: Most of the synthesized compounds were highly potent or equipotent to standard drug acarbose for inhibitory potential against α-glucosidase and α-amylase enzyme and hence this may indicate their antidiabetic activity. The docking study revealed that these compounds interact with active site of enzyme through hydrogen bonding and different pi interactions.


Author(s):  
Rania Kasmi ◽  
Larbi Elmchichi ◽  
Abdellah El Aissouq ◽  
Mohammed Bouachrine ◽  
Abdelkrim Ouammou

Backgroud: Kinases are proteins that control many biological functions. They are involved in cellular regulation, and many of them are deregulated in cancer proliferation. The evidence of this deregulation in many pathologies served as the origin of kinases as a therapeutic class and constitutes the motive that leads numerous teams to search for inhibitors of these targets. Objective: Based on 3D-QSAR studies and the molecular docking approach, we have developed new potential inhibitors that could be optimized and transformed into colon cancer drugs. Objective: Based on 3D-QSAR studies and the molecular docking approach, we have developed new potential inhibitors that could be optimized and transformed into colon cancer drugs. Method: To design new bioactive molecules and study their interactions with the cyclin-depend kinase type 2 (CDK2) enzyme, we used two virtual screening methods: 3D-QSAR modeling and molecular docking on a series of 28 pyrimidine-based benzothiazole derivatives. Results: To develop models (3D QSAR) we used CoMFA and CoMSIA techniques using SYBYL-X2.0 molecular modeling software. The statistical parameters reveal that the good CoMFA model displays (Q²= 0.587; R²= 0.895) and that of CoMSIA displays (Q²= 0.552; R²= 0.768) which are considered to be very good internal prediction values, while an external validation of a test series of 5 compounds not included in the model development series gives R²test values of 0.56 for CoMFA and R²test values of 0.51 for CoMSIA. The molecular docking approach with AutoDockTools-1.5.6 is introduced in this work to enrich the interpretations extracted from the CoMFA and CoMSIA contour maps, and to provide an in silico research method for the most favorable mode of interaction of an inhibitor within its receptor (CDK2). Conclusion: We have constructed and validated a quantitative 3D model of structure-activity relation-ships of pyrimidine-based benzothiazole derivatives as CDK2 inhibitors. This model allows us to identify the nature and position of the groups that enhance the activity, giving us directions to discover new, more powerful molecules in a limited time.


Sign in / Sign up

Export Citation Format

Share Document