scholarly journals The Special theory of relativity in different media(Ⅰ)

Author(s):  
Dong Jun ◽  
Na Dong

Abstract In this paper, the special theory of relativity in different media is established, based on the fundamental invariant of the space-time four-dimensional space x2 + y2 + z2 - c2 t2 = x'2 + y'2 + z'2 - c' t'2 . First of all, the inertial coordinate system is strictly defined in mathematical language. The inertial coordinate system that uses the actual measured different speeds of light as the limit speed still retains its most basic characteristics as an inertial coordinate system. Then, the space-time coordinate transformation and velocity transformation formulas between inertial coordinate systems with different light velocity are derived. These results not only break through the limitation of "vacuum", but also all are exactly the same as the conclusions of the traditional special theory of relativity when c = c' ; and when c ≠ c' give the new physical content. This all lifted the threat of the theory of relativity by the speed of light experiment, making c = c' ; and c ≠ c' both inclusively under the basic point of view of the theory of relativity; which will inevitably broaden the way of using relativity to deal with physics problems and clarify many problems left over in the study of relativity. The article discusses the problem of relativistic kinematics involving the measurement of time and space, correctly interprets the effects of “ruler contraction” and “clock retardation”, and uncovers and correctly answers the “clock paradox” that accompanied the birth of relativity. For two motion systems S and S', that are separated from each other by constant velocity, at any time and where, the product of the proper time elapsed evenly and uniformly and the speed of light in the respective system are equal, cτ = c' τ'; and the product of the coordinates time read out in observing and recognizing the other party's proper time and the speed of light in the respective system are also equal, ct = c' t' . It is confirmed that the product of any moving individual's uniform disappearance proper time and its measured speed of light remain unchanged; and the proper time cannot be determined purely by the individual's subjective way. Deduced the uncertain relationship between the proper time and the coordinate time for an inertial coordinate system which was not noticed by the traditional special theory of relativity. Remind the practical astronomy workers who do the time measurement and the time service work to understand that it is impossible to equate practical scientific coordinate time and the proper time of ideal uniform disappearance (the so-called “Ephemeris Time”). Thereby pay attention to the impact of this uncertain relationship on the time measurement and the time service work, and propose ways to verify. Subsequent work will use this expanded special theory of relativity to conduct a comprehensive review of related physics, which will inevitably extend to issues that have not been or cannot be examined by traditional special theory of relativity.

2020 ◽  
Vol 33 (2) ◽  
pp. 118-139 ◽  
Author(s):  
Randolph Lundberg

When physicists write the variable v, they usually mean the velocity of an object in an inertial coordinate system, otherwise known as a reference frame. This is the most common velocity concept in modern physics. The velocity of an object in this sense depends on which inertial coordinate system one is working with. For example, an airplane in flight has a velocity of about 500 miles per hour in a coordinate system anchored in a nearby mountain, a velocity of more than 60 000 miles per hour in a coordinate system anchored in the sun, and a velocity of 0 in a coordinate system anchored in the airplane itself. The widely accepted idea that the ticking rate of a clock is a function of this type of clock velocity is absurd. It implies that a human analyst can control the ticking rates of physical clocks through the mental act of selecting a coordinate system. This is a nonsensical mingling of imagination with reality that is akin to believing that a movie character can jump out of your television set and take a seat in your living room. Despite this absurdity, the idea that a clock’s ticking rate depends on its velocity in an inertial coordinate system is a staple of modern physics. It is a pillar of Einstein’s special theory of relativity. It is central to the standard analysis of the so-called twin paradox. It underlies the predictions of Hafele and Keating concerning the ticking rates of clocks that travel in airplanes. Velocity absurdity of this sort flourishes today, and it may well continue to flourish for many years to come.


2021 ◽  
Author(s):  
Sebastin Patrick Asokan

Abstract This paper shows that from the fact that the same Reality is perceived differently by the observers in different inertial frames, we can draw a simple and straightforward explanation for the constancy of light's speed in all inertial frames without any need for bringing in paradoxical Lorentz Transformation. This paper also proves that Lorentz Transformation has failed in its attempt to do the impossible task of establishing t' ≠ t to explain the constancy of the speed of light in all inertial frames without contradicting the interchangeability of frames demanded by the First Postulate of the Special Theory of Relativity. This paper also points out the misconceptions regarding the claimed experimental verifications of Lorentz Transformation's predictions in the Hafele–Keating experiment and μ meson experiment. This paper concludes that Einstein's Special Theory Relativity can stand on its own merits without Lorentz Transformation.


Author(s):  
Geoff Cottrell

By the beginning of the twentieth century, our understanding of matter was completely transformed by the great discoveries of electromagnetism and relativity. ‘Energy, mass, and light’ outlines Einstein’s special theory of relativity of 1905, which describes what happens when objects move at speeds close to the speed of light. The theory transformed our understanding of the nature of space and time, and matter through the equivalence of mass and energy. In 1916, Einstein extended the theory to include gravity in the general theory of relativity, which revealed that matter affects space by curving space around it.


2020 ◽  
Vol 33 (2) ◽  
pp. 211-215 ◽  
Author(s):  
Shukri Klinaku

Is the special theory of relativity (STR) a “simple” or “tricky” theory? They who think that it is a simple theory say (i) that its postulates are simple, that Nature is such, (ii) that the mathematics of STR is perfect, and (iii) that experiments support it. I consider its two postulates to be very true, whereas the mathematics of the STR has a shortcoming, and, as for the experiments, the question must be posed: which theory do they support best? The problem for STR lies in the transition from its postulates to its basic equations, i.e., Lorentz transformation and the velocity addition formula. The passage from the principle of relativity and the constancy of the speed of light to the basic equations of the STR is affected by four fundamental errors—three physical and one mathematical. Continuous attempts to reconcile these latent mistakes have made STR increasingly tricky. As a result, it is in a similar situation to Ptolemy's geocentric model after “improvements” thereto by Tycho Brahe. However, the “Copernican solution” for relative motion—offered by extended Galilean relativity—is very simple and effective.


2021 ◽  
Vol 4 (1) ◽  
pp. 69-89
Author(s):  
Jakub Czajko

The special theory of relativity (STR) is operationally expanded onto orthogonal accelerations: normal  and binormal  that complement the instantaneous tangential speed  and thus can be structurally extended into operationally complete 4D spacetime without defying the STR. Thus the former classic Lorentz factor, which defines proper time differential  can be expanded onto  within a trihedron moving in the Frenet frame (T,N,B). Since the tangential speed  which was formerly assumed as being always constant, expands onto effective normal and binormal speeds ensuing from the normal and binormal accelerations, the expanded formula conforms to the former Lorentz factor. The obvious though previously overlooked fact that in order to change an initial speed one must apply accelerations (or decelerations, which are reverse accelerations), made the Einstein’s STR incomplete for it did not apply to nongravitational selfpropelled motion. Like a toy car lacking accelerator pedal, the STR could drive nowhere. Yet some scientists were teaching for over 115 years that the incomplete STR is just fine by pretending that gravity should take care of the absent accelerator. But gravity could not drive cars along even surface of earth. Gravity could only pull the car down along with the physics that peddled the nonsense while suppressing attempts at its rectification. The expanded formula neither defies the STR nor the general theory of relativity (GTR) which is just radial theory of gravitation. In fact, the expanded formula complements the STR and thus it supplements the GTR too. The famous Hafele-Keating experiments virtually confirmed the validity of the expanded formula proposed here.


2017 ◽  
Vol 9 (2) ◽  
pp. 77
Author(s):  
Koshun Suto

This paper discusses the “triplet thought experiment” in which accelerated motion is eliminated from the famous twin paradox thought experiment of the special theory of relativity (STR). The author considers the coordinate systems of an inertial frame M and rocket A moving at constant speed relative to each other. First, an observer in inertial frame M performs the triplet thought experiment, and it is confirmed that the delay in time which elapses in the moving system agrees with the predictions of the STR. However, the delay in time predicted by the STR is observed even in the case when an observer A in rocket A carries out the triplet thought experiment. Before starting movement at constant velocity, rocket A experiences accelerated motion. The coordinate system of rocket A cannot be regarded physically as a stationary system. Even so, observer A observes the delay predicted by the STR. If the previous, traditional interpretation is assumed to be correct, observer A will never observe a delay in time agreeing with the predictions of the STR. To avoid paradox, the previously proposed traditional interpretation must be revised.


2021 ◽  
Author(s):  
SEBASTIN PATRICK ASOKAN

Abstract This paper shows that from the fact that the same Reality is perceived differently by the observers in different inertial frames, we can draw a simple and straightforward explanation for the constancy of light's speed in all inertial frames without any need for bringing in paradoxical Lorentz Transformation. This paper shows that the premise that each inertial frame has its unique time, which Lorentz Transformation introduced to explain the constancy of the speed of light in all inertial frames is incompatible with the interchangeability of the frames, an essential requisite of the First Postulate of the Special Theory of Relativity. This paper also points out the misconceptions regarding the claimed experimental verifications of Lorentz Transformation's predictions in the Hafele–Keating experiment and μ meson experiment. This paper hints at the possibility of attributing the observed slowing down of fast-moving clocks to the Relativistic Variation of Mass with Velocity instead of Time Dilation. This paper concludes that Einstein's Special Theory Relativity can stand on its own merits without Lorentz Transformation.


2021 ◽  
Author(s):  
Na Dong ◽  
Dong Jun

Abstract This paper analyzes the problems and contradictions that occur when the traditional special theory of relativity which uses the speed of light in a vacuum as an invariant constant, studies the propagation of light in media. These problems are re-examined and discussed with the special theory of relativity of variable speed of light. The transformation relationship of the characteristic quantities describing light wave frequency ν, phase velocity w and the direction angle α of the wave normal between the two inertial coordinate systems in vacuum S and in medium S' were derived; combining the transformation of the light ray speed u which describes light granular motion, the de Broglie wave-particle velocity relationship in the vacuum u w = c2 is νextended to the medium to become u' w' = c'2. Corrected the approach of the traditional special theory of relativity when dealing with these problems, in which the transformation from the space-time coordinates to the relevant physical quantity is limited to the half-sided transformation of the media into the vacuum (not two sided transformation), so that the resulting contradictions and problems are all solved. Optical experiments that support the traditional special theory of relativity, such as the Fizeau experiment and the Michelson-Morley experiment, not only still support and agree with the generalized special theory of relativity with variable speed of light, but also obtain a more correct and satisfactory interpretation from it.


Sign in / Sign up

Export Citation Format

Share Document