Anti-fatigue Effects of Ginseng Antler Yam Tang Modulation of Oxidative Stress Signaling in a Mice Model

2020 ◽  
Author(s):  
Lei Miao ◽  
Rongrong Zhang ◽  
Shuai Shao ◽  
Hongyin Zhang ◽  
Fengqin Xiao ◽  
...  

Abstract Background: Ginseng Antler Yam Tang (GAYT), believe to invigorate “Qi” (vital energy), nourish “Blood” (body circulation) and engender “liquid” (body fluid), is a traditional Chinese medicine formula derived from the traditional prescription and Chinese traditional medicine partner theory. Methods: In this study, we aimed to evaluate the anti-fatigue effects of GAYT and its mechanisms are related to oxidative stress signaling using GAYT composition, in vitro and in vivo antioxidant, and biochemical index detection. Chemical components analysis of GAYT was performed by high performance liquid chromatography (HPLC) and ultraviolet spectrophotometry (UV). Results: The results show that the GAYT is rich in protein, total flavonoids, total polysaccharide and saponin. The mice model was treatment by GAYT (0.9, 1.8 and 3.6g/kg) for 4 weeks. GAYT treatment enhanced antioxidant activities. GAYT significantly enhances the exercise performance in weight-loaded swimming, rotating rod, and forced running test. Biochemical index levels showed that these effects were closely correlated with inhibiting the depletion of glycogen, blood lactic acid (LD) and adenosine triphosphate (ATP) stores, regulating oxidative stress-related parameters (superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and malonaldehyde (MDA)) in serum and liver of mice. Moreover, the results show that the effects of GAYT may be related with its regulation on the activations of AMP-activated protein kinase and protein kinase B in liver of mice.Conclusions: GAYT can induce recovery from fatigue in mice via the activation of the AMPK and AKT/mTOR pathways. Provide a theoretical basis for the study of GAYT's anti-fatigue effect

2021 ◽  
Vol 15 (3) ◽  
pp. 175-194
Author(s):  
Boutaina Addoum ◽  
◽  
Bouchra El khalfi ◽  
Mohamed Idiken ◽  
Souraya Sakoui ◽  
...  

Background: Antioxidants are developed to assist the immune system and overcome oxidative stress, the aggression of cellular constituents due to imbalance between reactive oxygen species and the inner antioxidant system. The main objective of this study was to search for new and potent antioxidants to protect humans against diseases associated with oxidative stress. Methods: In this study, three pyrano-[2,3-c]-pyrazole derivatives were synthesized via Multicomponent Reaction (MCR) approach and were characterized, using a melting point, High-Performance Liquid Chromatography (HPLC), and spectroscopic analyses (IR; 1H-NMR; 13C-NMR). All of the generated compounds were screened for their antioxidant properties in vivo, using ciliate “Tetrahymena” as a model organism exposed to oxidative and nitrative stress. They were then studied in vitro by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. Results: The results demonstrated that the three compounds (5a, b, c) are biologically active and possess potent antioxidant activities, especially the 5a and 5b derivatives. On the other hand, the in vitro bioassays revealed that the 5a derivative possessed a significant antioxidant activity much greater than ascorbic acid. Accordingly, the in silico data are consistent with the experimental data. Conclusion: These findings confirmed the potent antioxidant property of the synthesized compounds, providing us with new inspiration and challenges to design a library of pharmaceutical compounds with strong activity and low toxicity in the future.


Author(s):  
Mohammed Aliyu Sulaiman ◽  
Daniel Dahiru ◽  
Mohammed Auwal Ibrahim ◽  
Ahmed Ibrahim Hayatu

Background: Oxidative stress is involved in the pathogenesis of hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, muscular dystrophy, aging and other associated diseases. Vitex doniana is used in Adamawa, northern Nigeria to treat oxidative stress associated diseases. However, the antioxidative effects of the plant have not been scientifically examined in oxidative stress experimental animal models. The aim of this study is to investigate the in vitro and in vivo antioxidant activities of aqueous and ethanol stem bark extracts of Vitex doniana in oxidative stress model of rats. Methods: The study used 35 adult albino rats weighing 175 ± 25 g, of which 30 were induced with oxidative stress by intraperitoneal injection of doxorubicin (10 mg/kg) for three consecutive days. Animals were treated by oral administration of silymarin (100 mg/kg) and Vitex doniana aqueous or ethanol extract (100 mg/kg and 200 mg/kg) for 14 consecutive days before they were sacrificed on the 15th day and blood was analyzed for biochemical indices of oxidative stress. Results: The results of the phytochemistry showed the presence of alkaloids, tannins, flavonoids, steroids, phenols, saponins, terpenoids, glycosides: and total flavonoids (52.70 ± 1.60 mg/ml and 75.40 ± 0.80 mg/ml), total phenols (21.45 ± 1.54 mg/ml and 26.50 ± 1.22 mg/ml) for aqueous and ethanol stem bark extracts respectively. The extracts scavenged DPPH radical, reduced Fe3+ and inhibited lipid peroxidation. Doxorubicin significantly (p<0.05) lowered the levels of SOD, CAT, GR and TAS and significantly (p<0.05) but, increased the level of LPO. Oral treatment with Vitex doniana extracts significantly (p<0.05) increased the activities of CAT, GR, SOD and TAS while LPO was significantly (p<0.05) lowered. Vitex doniana stem bark extracts significantly (p<0.05) improved the biochemical derangements observed in the induced untreated animals in comparable manner to that of Silymarin. Conclusion: The present study provides the scientific rationale for the use of Vitex doniana stem bark in traditional medicine and has a viable antioxidative capacity both in vitro and in vivo.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 304 ◽  
Author(s):  
Sara Abidar ◽  
Razvan Boiangiu ◽  
Gabriela Dumitru ◽  
Elena Todirascu-Ciornea ◽  
Amina Amakran ◽  
...  

Ceratonia siliqua L. is a Mediterranean medicinal plant traditionally cultivated for its ethnopharmacological benefits, such as antidiarrheal, antidiabetic, enhance acetylcholine, antioxidant, antiatherosclerotic, and for its possible anti-neurodegenerative potential. The aim of the present study was to evaluate the chemical composition, as well as the cognitive-enhancing, anxiolytic, and antioxidant activities of the aqueous extract from C. siliqua (CsAE) leaves against 6-hydroxydopamine (6-OHDA) zebrafish Parkinson’s disease (PD) model. CsAE (0.1, 0.3, and 1 mg/L) was administered by immersion to zebrafish (Danio rerio) for eight consecutive days and one hour before each behavioral test of each day, while 6-OHDA (250 µM) treatment was supplied one day before the novel tank diving test (NTT). Qualitative and quantitative analyses were performed by the ultra-high-performance liquid chromatography (UHPLC) analysis. The memory performance was evaluated through the NTT and Y-maze tests. Additionally, the in vitro and in vivo antioxidant status and acetylcholinesterase (AChE) activity was also assessed. Our finds demonstrated that CsAE presented positive antioxidant and anti-AChE activities, which contributed to the improvement of cognitive function in the 6-OHDA zebrafish PD model.


2019 ◽  
Vol 74 (11-12) ◽  
pp. 329-337 ◽  
Author(s):  
Zlatina Kokanova-Nedialkova ◽  
Paraskev Nedialkov ◽  
Magdalena Kondeva-Burdina ◽  
Rumyana Simeonova

Abstract An ultra-high-performance liquid chromatography-high-resolution mass spectrometry based profiling of a purified MeOH extract (PME) from the roots of Chenopodium bonus-henricus L. (Amaranthaceae) tentatively identified 15 saponins of six sapogenins. The PME exerts hepatoprotective and antioxidant activities comparable to those of flavonoid complex silymarin in in vitro (1 and 10 μg/mL) and in vivo (200 mg/kg/daily for 7 days) models of hepatotoxicity, induced by CCl4. The main constituents of PME, respectively saponins bonushenricoside A (1), 3-O-β-D-glucuronopyranosyl-bayogenin-28-O-β-D-glucopyranosyl ester (2), 3-O-β-D-glucuronopyranosyl-medicagenic acid-28-O-β-D-xylopyranosyl (1→4)-α-L-rhamnopyranosyl(1→2)-α-L-arabinopyranosyl ester (3), 3-O-β-D-glucuronopyranosyl-2β-hydroxygypsogenin-28-O-β-D-glucopyranosyl ester (4), 3-O-α-L-rabinopyranosyl-bayogenin-28-O-β-D-glucopyranosyl ester (6) and bonushenricoside B (8) (3 μg/mL each), compared to silymarin (5 and 50 μg/mL), significantly reduced the cellular damage caused by CCl4 in rat hepatocytes, preserved cell viability and glutathione level, decreased lactate dehydrogenase leakage and reduced lipid damage. The experimental data suggest that the glycosides of phytolaccagenin, bayogenin, medicagenic acid, 2β-hydroxygypsogenin, 2β-hydroxyoleanoic acid and oleanoic acid are a promising and safe class of hepatoprotective agents.


2020 ◽  
Author(s):  
Gervason Moriasi ◽  
Elias Nelson ◽  
Epaphrodite Twahirwa

Abstract Oxidative stress is a critical etiologic factor and driver of inflammatory responses, witnessed in chronic and persistent conditions. The current anti-oxidative stress and anti-inflammatory drugs are associated with detrimental effects, high dependence, high costs, inaccessibility, among other drawbacks; therefore, a need for alternatives is imperative. Despite the remarkable potential of medicinal plants, there are scanty empirical studies on their pharmacologic efficacy. The Phytexponent is an alcoholic polyherbal preparation of Allium sativum, Triticum repens, Echinacea purpurea, Viola tricolor and Matricaria chamomilla. In complementary medicine, the Phytexponent is used to boost immunity, to treat inflammatory disorders, oxidative stress, blood pressure, diabetes, stress/depression, among other conditions. However, there is no sufficient scientific data to support these healing claims. Therefore, in the current study evaluated the in vitro anti-inflammatory, antioxidant activities and qualitative phytochemical composition of the Phytexponent. The in vitro anti-inflammatory activities were evaluated using the inhibition of protein denaturation and the human erythrocyte (HRBC) membrane stabilization techniques. Antioxidant activities were evaluated by the 1,1-diphenyl-picryl-1-hydrazyl (DPPH) radical scavenging-, the hydroxyl radical scavenging- and catalase activities. Qualitative phytochemical screening was performed using standard procedures. The results showed a significantly higher percentage inhibition of heat-induced- and hypotonicity induced HRBC hemolysis by the Phytexponent at concentrations of 50 % and 100 %, compared with the percentage inhibitions of etanercept (p<0.05). No significant differences in percentage inhibitions of protein denaturation were observed among concentrations of 12.5 %,25.0 %,50.0 %,100.0 % of the Phytexponent and etanercept (25 mg/ml) (p˃0.05). Furthermore, the Phytexponent demonstrated high antioxidant activities against the DPPH- (IC50=0.00733%) and the hydroxyl- (IC50 = 0.716 %) radicals in vitro.The Phytexponent recorded significantly higher catalase activities at concentrations of 1 % and 0.1 % than those recorded by ascorbic acid at similar concentrations. Qualitative phytochemical screening revealed the presence of phenols, flavonoids, tannins, among other antioxidant associated phytochemicals. The bioactivities of the Phytexponent reported herein, were attributed to the presence of these phytochemicals. Further studies to establish specific mode(s) through which the Phytexponent exerts in vitro anti-inflammatory and antioxidant effects are encouraged. Moreover, in vivo anti-inflammatory and antioxidant activities should be done to determine the replicability of these findings in vivo. Bioassay-guided isolation of compounds responsible for the reported bioactivities herein should be done.


2021 ◽  
Author(s):  
Samina Rubnawaz ◽  
Waqas Khan Kayani ◽  
Nosheen Akhtar ◽  
Rashid Mahmood ◽  
Furrukh Mehmood ◽  
...  

Abstract Ajuga bracteosa Wall. ex Benth is an endangered medicinal herb used against different ailments in folklore medicines. Here, we aimed to create a new insight to the fundamental mechanisms of genetic transformation in the ethnomedicinal usage of this plant. We transformed the plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. The transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, and linked the activities with elemental analysis, polyphenol content and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was found most abundant in all transgenic lines (up to 101.26 ± 6 µg/mg). Furthermore, among all tested plant extracts, transgenic line 3 (ABRL3) showed maximum phenolics (13.39 ± 2µg GAE/mg) and flavonoids content (4.75 ± 0.16 µg QE/mg). ABRL3 also demonstrated potent total antioxidant capacity (8.16 ± 1 µg AAE/mg), total reducing power, (6.60 ± 1.17 µg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8µg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 µg/mL), and iron chelating power (IC50 = 154.8 ± 2 µg/mL) among all plants. Transformed plant extracts also produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant properties in in vivo mice model as compared to control untransformed plant material. Additionally, no abnormal behavior or lethality was observed in any animal tested. In conclusion, transgenic regenerants of A. bracteosa pose better pharmacological properties under the effect of rol genes as compared to wild type plants.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 123 ◽  
Author(s):  
Ji Han ◽  
Yong Lee ◽  
Jun Im ◽  
Young Ham ◽  
Hee Lee ◽  
...  

Astaxanthin (AXT), a xanthophyll carotenoid compound, has potent antioxidant, anti-inflammatory and neuroprotective properties. Neuroinflammation and oxidative stress are significant in the pathogenesis and development of Alzheimer’s disease (AD). Here, we studied whether AXT could alleviate neuroinflammation, oxidative stress and memory loss in lipopolysaccharide (LPS) administered mice model. Additionally, we investigated the anti-oxidant activity and the anti-neuroinflammatory response of AXT in LPS-treated BV-2 microglial cells. The AXT administration ameliorated LPS-induced memory loss. This effect was associated with the reduction of LPS-induced expression of inflammatory proteins, as well as the production of reactive oxygen species (ROS), nitric oxide (NO), cytokines and chemokines both in vivo and in vitro. AXT also reduced LPS-induced β-secretase and Aβ1–42 generation through the down-regulation of amyloidogenic proteins both in vivo and in vitro. Furthermore, AXT suppressed the DNA binding activities of the signal transducer and activator of transcription 3 (STAT3). We found that AXT directly bound to the DNA- binding domain (DBD) and linker domain (LD) domains of STAT3 using docking studies. The oxidative stress and inflammatory responses were not downregulated in BV-2 cells transfected with DBD-null STAT3 and LD-null STAT3. These results indicated AXT inhibits LPS-induced oxidant activity, neuroinflammatory response and amyloidogenesis via the blocking of STAT3 activity through direct binding.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2440 ◽  
Author(s):  
Yang Liu ◽  
Pei Chen ◽  
Mingming Zhou ◽  
Tongli Wang ◽  
Shengzuo Fang ◽  
...  

Cyclocarya paliurus has been widely used as an ingredient in functional foods in China. However, the antioxidant properties of phenolic compounds and the effect of the plant origin remain unclear. The present study evaluated the geographical variation of this plant in term of its phenolic composition and antioxidant activities based on leaf materials collected from five regions. high-performance liquid chromatography (HPLC) analysis showed that there are three major components, quercetin-3-O-glucuronide, kaempferol-3-O-glucuronide, and kaempferol-3-O-rhamnoside, and their contents varied significantly among sampling locations. The investigated phenolic compounds showed substantial antioxidant activities, both in vitro and in vivo, with the highest capacity observed from Wufeng and Jinzhongshan. Correlation analysis revealed that quercetin and kaempferol glycosides might be responsible for the antioxidant activities. Our results indicate the importance of geographic origin, with sunny hours and temperature as the main drivers affecting the accumulation of C. paliurus phenolics and their antioxidant properties.


2020 ◽  
Vol 10 (23) ◽  
pp. 8698
Author(s):  
Hae Lim Kim ◽  
Hae Jin Lee ◽  
Dong-Ryung Lee ◽  
Bong-Keun Choi ◽  
Seung Hwan Yang

Osteoarthritis (OA) is a general joint illness caused by the destruction of joint cartilage, and is common in the population of old people. Its occurrence is related to inflammatory reactions and cartilage degradation. AyuFlex® is an aqueous extract of Terminalia chebula fruit, and T. chebula has been utilized extensively in several traditional oriental medications for the management of diverse diseases. Pre-clinical and clinical research has shown its antioxidant and anti-inflammatory effectiveness. Nevertheless, the mechanism underlying the anti-arthritic effects of AyuFlex® remains unclear. In the current research, we proposed the ameliorating effects of AyuFlex® with respect to the incidence of OA and described the latent signalization in interleukin (IL)-1β-treated chondrocytes and MIA-incurred OA in a rat model. In vitro, AyuFlex® decreased oxidative stress and induction of pro-inflammatory cytokines and mediators as well as matrix metalloproteinases (MMPs), while also increasing the levels of collagen synthesis-related proteins. Mechanistically, we identified that AyuFlex® disrupted nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation via the inhibition of NF-κB p65 and extracellular regulated protein kinase (ERK) phosphorylation. The ameliorating effects of AyuFlex® were also observed in vivo. AyuFlex® significantly inhibited the MIA-incurred increase in OA symptoms such as oxidative stress, cartilage damage, and changes in cytokines and MMPs revelation in arthrodial cartilage. Therefore, our results suggest that AyuFlex® attenuates OA progression in vivo, indicating that AyuFlex® can be suggested as an excellent therapeutic remedy for the care of OA.


Beverages ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 68
Author(s):  
Mallique Qader ◽  
Jian Xu ◽  
Yuejun Yang ◽  
Yuancai Liu ◽  
Shugeng Cao

Juices, wine, coffee, and cocoa are rich sources of natural polyphenolic compounds that have potent antioxidant activities proven by in vitro and in vivo studies. These polyphenolic compounds quench reactive oxygen and nitrogen species (RONS) or reactive free radicals and act as natural antioxidants which are also able to protect against reactive oxygen species (ROS)-mediated oxidative damage, which elevates cellular antioxidant capacity to induce antioxidant defense mechanisms by modulating transcription factors. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor encoded in humans. It is activated as a result of oxidative stress and induces the expression of its target genes. This is one of the most important cellular defense mechanisms against oxidative stress. However, the oxidative stress alone is not enough to activate Nrf2. Hence phytochemicals, especially polyphenolics, act as natural Nrf2 activators. Herein, this review discusses the natural products identified in juices, coffee, cocoa and wines that modulate Nrf2 activity in cellular systems.


Sign in / Sign up

Export Citation Format

Share Document