scholarly journals Network-Based Analysis of Virulence Factors for Uncovering Aeromonas Veronii Pathogenesis

Author(s):  
Hong Li ◽  
Xiang Ma ◽  
Yanqiong Tang ◽  
Dan Wang ◽  
Ziding Zhang ◽  
...  

Abstract Background: Aeromonas veronii is a pathogen that causes serious harm to aquaculture. Virulence factors are its pathogenic basis, which could promote pathogens to colonize the host, evade host defense and so on. But because experimental verification of virulence factors is time-consuming and laborious, the number of known virulence factors is limited. In this past, most studies only focused on single virulence factor, resulting the biased interpretation for pathogenesis.Results: In this study, a protein-protein interaction (PPI) network at genome-wide scale for A. veronii was first constructed. Then, virulence factors were predicted and mapped on the network. Topological characteristics of the virulence factors were analyzed. The results showed that the virulence factors had higher degree and betweenness centrality than the other proteins in the network. In particular, the virulence factors tended to interact with each other and were enriched in two network modules. One of the modules mainly consisted of histidine kinases, response regulators, diguanylate cyclases and phosphodiesterases, which played important roles in two-component regulatory systems and the synthesis and degradation of cyclic-diGMP. Furthermore, an interspecies PPI network between A. veronii and its host Oreochromis niloticus was also constructed. The structures and interacting sites of the virulence factors and host proteins were added to the interspecies PPI network. By analyzing the interspecies PPI network, we found that the virulence factors could competitively bind host proteins and some of the interacting sites of the virulence factors were shared by different host proteins. Drugs could be designed to target these sites and further prevent pathogen to interfere with host pathways.Conclusions: Our results indicated that the virulence factors regulated the virulence of A. veronii by involving in signal transduction pathway and manipulate host biological processes by mimicking and competitively binding host proteins. Our results deepened the understanding for pathogenesis and had important theoretical significance for designing targeted antibacterial drugs.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hong Li ◽  
Xiang Ma ◽  
Yanqiong Tang ◽  
Dan Wang ◽  
Ziding Zhang ◽  
...  

Abstract Background Aeromonas veronii is a bacterial pathogen in aquaculture, which produces virulence factors to enable it colonize and evade host immune defense. Given that experimental verification of virulence factors is time-consuming and laborious, few virulence factors have been characterized. Moreover, most studies have only focused on single virulence factors, resulting in biased interpretation of the pathogenesis of A. veronii. Results In this study, a PPI network at genome-wide scale for A. veronii was first constructed followed by prediction and mapping of virulence factors on the network. When topological characteristics were analyzed, the virulence factors had higher degree and betweenness centrality than other proteins in the network. In particular, the virulence factors tended to interact with each other and were enriched in two network modules. One of the modules mainly consisted of histidine kinases, response regulators, diguanylate cyclases and phosphodiesterases, which play important roles in two-component regulatory systems and the synthesis and degradation of cyclic-diGMP. Construction of the interspecies PPI network between A. veronii and its host Oreochromis niloticus revealed that the virulence factors interacted with homologous proteins in the host. Finally, the structures and interacting sites of the virulence factors during interaction with host proteins were predicted. Conclusions The findings here indicate that the virulence factors probably regulate the virulence of A. veronii by involving in signal transduction pathway and manipulate host biological processes by mimicking and binding competitively to host proteins. Our results give more insight into the pathogenesis of A. veronii and provides important information for designing targeted antibacterial drugs.


2017 ◽  
Vol 18 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Alexiou Athanasios ◽  
Vairaktarakis Charalampos ◽  
Tsiamis Vasileios ◽  
Ghulam Ashraf

Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 712-723 ◽  
Author(s):  
Valérie Dekimpe ◽  
Eric Déziel

Pseudomonas aeruginosa uses the two major quorum-sensing (QS) regulatory systems las and rhl to modulate the expression of many of its virulence factors. The las system is considered to stand at the top of the QS hierarchy. However, some virulence factors such as pyocyanin have been reported to still be produced in lasR mutants under certain conditions. Interestingly, such mutants arise spontaneously under various conditions, including in the airways of cystic fibrosis patients. Using transcriptional lacZ reporters, LC/MS quantification and phenotypic assays, we have investigated the regulation of QS-controlled factors by the las system. Our results show that activity of the rhl system is only delayed in a lasR mutant, thus allowing the expression of multiple virulence determinants such as pyocyanin, rhamnolipids and C4-homoserine lactone (HSL) during the late stationary phase. Moreover, at this stage, RhlR is able to overcome the absence of the las system by activating specific LasR-controlled functions, including production of 3-oxo-C12-HSL and Pseudomonas quinolone signal (PQS). P. aeruginosa is thus able to circumvent the deficiency of one of its QS systems by allowing the other to take over. This work demonstrates that the QS hierarchy is more complex than the model simply presenting the las system above the rhl system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suthanthiram Backiyarani ◽  
Rajendran Sasikala ◽  
Simeon Sharmiladevi ◽  
Subbaraya Uma

AbstractBanana, one of the most important staple fruit among global consumers is highly sterile owing to natural parthenocarpy. Identification of genetic factors responsible for parthenocarpy would facilitate the conventional breeders to improve the seeded accessions. We have constructed Protein–protein interaction (PPI) network through mining differentially expressed genes and the genes used for transgenic studies with respect to parthenocarpy. Based on the topological and pathway enrichment analysis of proteins in PPI network, 12 candidate genes were shortlisted. By further validating these candidate genes in seeded and seedless accession of Musa spp. we put forward MaAGL8, MaMADS16, MaGH3.8, MaMADS29, MaRGA1, MaEXPA1, MaGID1C, MaHK2 and MaBAM1 as possible target genes in the study of natural parthenocarpy. In contrary, expression profile of MaACLB-2 and MaZEP is anticipated to highlight the difference in artificially induced and natural parthenocarpy. By exploring the PPI of validated genes from the network, we postulated a putative pathway that bring insights into the significance of cytokinin mediated CLAVATA(CLV)–WUSHEL(WUS) signaling pathway in addition to gibberellin mediated auxin signaling in parthenocarpy. Our analysis is the first attempt to identify candidate genes and to hypothesize a putative mechanism that bridges the gaps in understanding natural parthenocarpy through PPI network.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Weishuang Xue ◽  
Jinwei Li ◽  
Kailei Fu ◽  
Weiyu Teng

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease that affects the quality of life of elderly individuals, while the pathogenesis of AD is still unclear. Based on the bioinformatics analysis of differentially expressed genes (DEGs) in peripheral blood samples, we investigated genes related to mild cognitive impairment (MCI), AD, and late-stage AD that might be used for predicting the conversions. Methods. We obtained the DEGs in MCI, AD, and advanced AD patients from the Gene Expression Omnibus (GEO) database. A Venn diagram was used to identify the intersecting genes. Gene Ontology (GO) and Kyoto Gene and Genomic Encyclopedia (KEGG) were used to analyze the functions and pathways of the intersecting genes. Protein-protein interaction (PPI) networks were constructed to visualize the network of the proteins coded by the related genes. Hub genes were selected based on the PPI network. Results. Bioinformatics analysis indicated that there were 61 DEGs in both the MCI and AD groups and 27 the same DEGs among the three groups. Using GO and KEGG analyses, we found that these genes were related to the function of mitochondria and ribosome. Hub genes were determined by bioinformatics software based on the PPI network. Conclusions. Mitochondrial and ribosomal dysfunction in peripheral blood may be early signs in AD patients and related to the disease progression. The identified hub genes may provide the possibility for predicting AD progression or be the possible targets for treatments.


2022 ◽  
Vol 12 (3) ◽  
pp. 523-532
Author(s):  
Xin Yan ◽  
Chunfeng Liang ◽  
Xinghuan Liang ◽  
Li Li ◽  
Zhenxing Huang ◽  
...  

<sec> <title>Objective:</title> This study aimed to identify the potential key genes associated with the progression and prognosis of adrenocortical carcinoma (ACC). </sec> <sec> <title>Methods:</title> Differentially expressed genes (DEGs) in ACC cells and normal adrenocortical cells were assessed by microarray from the Gene Expression Omnibus database. The biological functions of the classified DEGs were examined by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses and a protein–protein interaction (PPI) network was mapped using Cytoscape software. MCODE software was also used for the module analysis and then 4 algorithms of cytohubba software were used to screen hub genes. The overall survival (OS) examination of the hub genes was then performed by the ualcan online tool. </sec> <sec> <title>Results:</title> Two GSEs (GSE12368, GSE33371) were downloaded from GEO including 18 and 43 cases, respectively. One hundred and sixty-nine DEGs were identified, including 57 upregulated genes and 112 downregulated genes. The Gene Ontology (GO) analyses showed that the upregulated genes were significantly enriched in the mitotic cytokines is, nucleus and ATP binding, while the downregulated genes were involved in the positive regulation of cardiac muscle contraction, extracellular space, and heparin-binding (P < 0.05). The Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) pathway examination showed significant pathways including the cell cycle and the complement and coagulation cascades. The protein– protein interaction (PPI) network consisted of 162 nodes and 847 edges, including mitotic nuclear division, cytoplasmic, protein kinase binding, and cell cycle. All 4 identified hub genes (FOXM1, UBE2C, KIF11, and NDC80) were associated with the prognosis of adrenocortical carcinoma (ACC) by survival analysis. </sec> <sec> <title>Conclusions:</title> The present study offered insights into the molecular mechanism of adrenocortical carcinoma (ACC) that may be beneficial in further analyses. </sec>


2013 ◽  
Vol 63 (1) ◽  
Author(s):  
Geok Wei Leong ◽  
Sheau Chen Lee ◽  
Cher Chien Lau ◽  
Peter Klappa ◽  
Mohd Shahir Shamsir Omar

Several visualization tools for the mapping of protein-protein interactions have been developed in recent years. However, a systematic comparison of the virtues and limitations of different PPI visualization tools has not been carried out so far. In this study, we compare seven commonly used visualization tools, based on input and output file format, layout algorithm, database integration, Gene Ontology annotation and accessibility of each tool. The assessment was carried out based on brain disease datasets. Our suggested tools, NAViGaTOR, Cytoscape and Gephi perform competitively as PPI network visualization tools, can be a reference for future researches on PPI mapping and analysis. 


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Emily E. Ackerman ◽  
Eiryo Kawakami ◽  
Manami Katoh ◽  
Tokiko Watanabe ◽  
Shinji Watanabe ◽  
...  

ABSTRACTThe positions of host factors required for viral replication within a human protein-protein interaction (PPI) network can be exploited to identify drug targets that are robust to drug-mediated selective pressure. Host factors can physically interact with viral proteins, be a component of virus-regulated pathways (where proteins do not interact with viral proteins), or be required for viral replication but unregulated by viruses. Here, we demonstrate a method of combining human PPI networks with virus-host PPI data to improve antiviral drug discovery for influenza viruses by identifying target host proteins. Analysis shows that influenza virus proteins physically interact with host proteins in network positions significant for information flow, even after the removal of known abundance-degree bias within PPI data. We have isolated a subnetwork of the human PPI network that connects virus-interacting host proteins to host factors that are important for influenza virus replication without physically interacting with viral proteins. The subnetwork is enriched for signaling and immune processes distinct from those associated with virus-interacting proteins. Selecting proteins based on subnetwork topology, we performed an siRNA screen to determine whether the subnetwork was enriched for virus replication host factors and whether network position within the subnetwork offers an advantage in prioritization of drug targets to control influenza virus replication. We found that the subnetwork is highly enriched for target host proteins—more so than the set of host factors that physically interact with viral proteins. Our findings demonstrate that network positions are a powerful predictor to guide antiviral drug candidate prioritization.IMPORTANCEIntegrating virus-host interactions with host protein-protein interactions, we have created a method using these established network practices to identify host factors (i.e., proteins) that are likely candidates for antiviral drug targeting. We demonstrate that interaction cascades between host proteins that directly interact with viral proteins and host factors that are important to influenza virus replication are enriched for signaling and immune processes. Additionally, we show that host proteins that interact with viral proteins are in network locations of power. Finally, we demonstrate a new network methodology to predict novel host factors and validate predictions with an siRNA screen. Our results show that integrating virus-host proteins interactions is useful in the identification of antiviral drug target candidates.


2020 ◽  
Author(s):  
Esmaeil Nourani ◽  
Ehsaneddin Asgari ◽  
Alice C. McHardy ◽  
Mohammad R.K. Mofrad

AbstractWe introduce TripletProt, a new approach for protein representation learning based on the Siamese neural networks. We evaluate TripletProt comprehensively in protein functional annotation tasks including sub-cellular localization (14 categories) and gene ontology prediction (more than 2000 classes), which are both challenging multi-class multi-label classification machine learning problems. We compare the performance of TripletProt with the state-of-the-art approaches including recurrent language model-based approach (i.e., UniRep), as well as protein-protein interaction (PPI) network and sequence-based method (i.e., DeepGO). Our TripletProt showed an overall improvement of F1 score in the above mentioned comprehensive functional annotation tasks, solely relying on the PPI network. TripletProt and in general Siamese Network offer great potentials for the protein informatics tasks and can be widely applied to similar tasks.


2021 ◽  
Author(s):  
Zhihong Zhang ◽  
Sai Hu ◽  
Wei Yan ◽  
Bihai Zhao ◽  
Lei Wang

Abstract BackgroundIdentification of essential proteins is very important for understanding the basic requirements to sustain a living organism. In recent years, various different computational methods have been proposed to identify essential proteins based on protein-protein interaction (PPI) networks. However, there has been reliable evidence that a huge amount of false negatives and false positives exist in PPI data. Therefore, it is necessary to reduce the influence of false data on accuracy of essential proteins prediction by integrating multi-source biological information with PPI networks.ResultsIn this paper, we proposed a non-negative matrix factorization and multiple biological information based model (NDM) for identifying essential proteins. The first stage in this progress was to construct a weighted PPI network by combing the information of protein domain, protein complex and the topology characteristic of the original PPI network. Then, the non-negative matrix factorization technique was used to reconstruct an optimized PPI network with whole enough weight of edges. In the final stage, the ranking score of each protein was computed by the PageRank algorithm in which the initial scores were calculated with homologous and subcellular localization information. In order to verify the effectiveness of the NDM method, we compared the NDM with other state-of-the-art essential proteins prediction methods. The comparison of the results obtained from different methods indicated that our NDM model has better performance in predicting essential proteins.ConclusionEmploying the non-negative matrix factorization and integrating multi-source biological data can effectively improve quality of the PPI network, which resulted in the led to optimization of the performance essential proteins identification. This will also provide a new perspective for other prediction based on protein-protein interaction networks.


Sign in / Sign up

Export Citation Format

Share Document