scholarly journals Association of Iodine-Related Knowledge, Attitudes, and Behaviours with Urinary Iodine Excretion in Pregnant Women with Mild Iodine Deficiency

2020 ◽  
Author(s):  
Zhengyuan Wang ◽  
Yiwen Wu ◽  
Zehuan Shi ◽  
Jun Song ◽  
Guoquan Wang ◽  
...  

Abstract Background: China’s universal salt-iodization program has all but eliminated iodine deficiency disorders. Concern has shifted to mild iodine deficiency. Our study examined factors with the potential to predict mild iodine deficiency in pregnant women. Methods: A total of 2 400 pregnant women were enrolled using a multistage, stratified, random-sampling method. Data were collected through face-to-face interviews, a standardized questionnaire, an iodine-related knowledge questionnaire, urine samples, and household cooking salt samples. Results: The median urinary iodine concentration (MUIC) was 148.0 μg/L for all participants, and 155.0 μg/L, 151.0 μg/L, and 139.6 μg/L in the first, second, and third trimesters, respectively. The third trimester’s MUIC was significantly lower than that of the first trimester, and the usage rates of iodized salt and qualified-iodized salt were 71.5% and 59.4%, respectively. Iodine-related knowledge was significantly different between the high and low UIC groups. Participants’ MUIC increased significantly with increases in iodine-related knowledge. The third trimester was a significant risk factor for high UIC, whereas abundant iodine-related knowledge, study the dietary knowledge urgently, and consumption of iodine-rich food within 48 hours of a urine iodine test were significant protective factors for high UIC (P<0.05). Conclusions: Iodine levels are adequate among pregnant women in Shanghai during the first and second trimesters, but insufficient in the third trimester. The use of iodized cooking salt does not determine the iodine status of pregnant women. Abundant iodine-related knowledge is important for pregnant women in the third trimester to maintain adequate urinary iodine.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242575
Author(s):  
Ina Kusrini ◽  
Jessica Farebrother ◽  
Donny Kristanto Mulyantoro

Iodine is an essential micronutrient for cognitive development and growth. Optimal intakes are critical during pregnancy. We report the iodine status and thyroid function of pregnant women living in areas previously affected by severe iodine deficiency and in longstanding iodine sufficient areas in Java, Indonesia. This cross-sectional study was conducted in Magelang, Java, from July to November 2015, in four sub-districts; two previously affected by severe iodine deficiency (area 1) and two that were iodine-sufficient (area 2). Iodine intake was estimated using median urinary iodine concentration in spot samples and mean urinary iodine excretion in 3 x 24-hour samples, thyroid hormones (thyroid-stimulating hormone and free thyroxine) were measured in venous blood samples, and iodine content of household salt samples was estimated by titration. We recruited a total of 244 pregnant women, 123 in area 1 and 121 in area 2. Urinary iodine results suggested adequate habitual iodine intakes in both areas (median urinary iodine concentration in area 1: 222 μg/l (interquartile range 189, 276 μg/l), area 2: 264 μg/l (interquartile range 172, 284 μg/l), however, the risk of inadequate intakes increased with advancing trimester (Odds Ratio = 2.59 (95% CI 1.19–5.67) and 3.85 (95% CI 1.64–9.02) at second and third trimesters, respectively). Estimated prevalence of thyroid function disorders was generally low. Salt was iodized to approximately 40 ppm and foods rich in native iodine did not contribute significantly to dietary intakes. Adequately iodized salt continues to prevent iodine insufficiency in pregnant women living in areas previously affected by severe iodine deficiency in Java, Indonesia. Monitoring and surveillance, particularly in vulnerable groups, should be emphasized to ensure iodine sufficiency prevails.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
David Larbi Simpong ◽  
Yaw Asante Awuku ◽  
Kenneth Kwame Kye-Amoah ◽  
Martin Tangnaa Morna ◽  
Prince Adoba ◽  
...  

Background. Iodine deficiency causes maternal hypothyroidism which can lead to growth, cognitive, and psychomotor deficit in neonates, infants, and children. This study examined the iodine status of pregnant women in a periurban setting in Ghana. Methods. This longitudinal study recruited 125 pregnant women by purposeful convenience sampling from the antenatal clinic of the Sefwi Wiawso municipal hospital in Ghana. Urinary iodine concentration (UIC) was estimated by the ammonium persulfate method at an estimated gestational age (EGA) of 11, 20, and 32 weeks. Demographic information, iodized salt usage, and other clinical information were collected using a questionnaire. Results. The prevalence of iodine deficiency among the pregnant women was 47.2% at EGA 11 and 60.8% at both EGA of 20 and 32, whereas only 0.8% of participants not using iodized salt had iodine sufficiency at EGA 32. 18.4%, 20%, and 24% of participants using iodized salt had iodine sufficiency at EGA 11, 20, and 32, respectively. Conclusion. A high prevalence of iodine deficiency was observed among our study cohort.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Norman Blumenthal ◽  
Karen Byth ◽  
Creswell J. Eastman

Aim. The primary objective of the study was to assess the iodine nutritional status, and its effect on thyroid function, of pregnant women in a private obstetrical practice in Sydney.Methods. It was a cross-sectional study undertaken between November 2007 and March 2009. Blood samples were taken from 367 women at their first antenatal visit between 7 and 11 weeks gestation for measurement of thyroid stimulating hormone (TSH) and free thyroxine (FT4) levels and spot urine samples for urinary iodine excretion were taken at the same time as blood collection.Results. The median urinary iodine concentration (UIC) for all women was 81 μg/l (interquartile range 41–169 μg/l). 71.9% of the women exhibited a UIC of <150 μg/l. 26% of the women had a UIC <50 μg/l, and 12% had a UIC <20 μg/l. The only detectable influences on UIC were daily milk intake and pregnancy supplements. There was no statistically significant association between UIC and thyroid function and no evidence for an effect of iodine intake on thyroid function.Conclusions. There is a high prevalence of mild to moderate iodine deficiency in women in Western Sydney but no evidence for a significant adverse effect on thyroid function. The 6.5% prevalence of subclinical hypothyroidism is unlikely to be due to iodine deficiency.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Haji Kedir ◽  
Yemane Berhane ◽  
Alemayehu Worku

Background.Iodine deficiency in pregnancy is a worldwide problem. This study aimed to assess prevalence and predictors of subclinical iodine deficiency among pregnant women in Haramaya district, eastern Ethiopia.Methods.A cross-sectional, community-based study was conducted on 435 pregnant women existing in ten randomly selected rural kebeles (kebele is the smallest administrative unit in Ethiopia). Data on the study subjects’ background characteristics, dietary habits, and gynecological/obstetric histories were collected via a structured questionnaire. UIC of <150 μg/L defined subclinical iodine deficiency. Data were analyzed by Stata 11. A multivariable logistic regression was used to identify the predictors of subclinical iodine deficiency.Results.The median urinary iodine concentration (MUIC) was 58.1 μg/L and 82.8% of the women who had subclinical iodine deficiency. The risk of subclinical iodine deficiency was reduced by the use of iodized salt (AOR = 0.13) and by intake of milk twice a month or more (AOR = 0.50), but it was increased by maternal illiteracy (AOR = 3.52).Conclusion.Iodine nutritional status of the pregnant women was poor. This shows that women and their children are exposed to iodine deficiency and its adverse effects. Thus, they need urgent supplementation with iodine and improved access to and intake of iodized salt and milk during pregnancy.


2020 ◽  
Vol 26 (2) ◽  
pp. 63-69
Author(s):  
Scrinic Olesea ◽  
Delia Corina Elena ◽  
Toma Geanina Mirela ◽  
Circo Eduard

Abstract Objective: Assessment of iodine nutritional status in pregnant women in the perimarine area of Romania, a region without iodine deficiency. Adequate iodine intake is the main source for normal thyroid function, ensuring the need for maternal thyroid hormones during pregnancy, but also for the development and growth of children in the fetal and postpartum period. Material and method: Prospective study performed on 74 pregnant women in the first 2 trimesters of pregnancy, originating from the perimarin area. The following indicators of iodine status were analyzed: urinary iodine concentration (UIC), the ratio between urinary iodine concentration and urinary creatinine (UIC/UCr), the prevalence of maternal goiter and the value of neonatal TSH (thyroid stimulating hormone). Results: The mean gestational age was 11 weeks. The ways of iodine intake are: iodized salt - 59.4%, iodized salt and iodine supplements- 23%, only iodine supplements -10.8% and 6.8% consume only non-iodized salt. The median of UIC was 133.03 mcg/l considered insufficient iodine intake (normal in pregnancy UIC >150 mcg/l), but the adjustment of UIC to urinary creatinine reveals a median of 152.83 mcg/g, a value that reflects an adequate iodine intake. The prevalence of goiter was 25.6% characteristic for a moderate iodine deficiency. The prevalence of neonatal TSH >5 mIU/L was registered in 18.8% characteristic of mild iodine deficiency. Conclusions: Monitoring of the iodine nutritional status is recommended for the prevention of disorders due to iodine deficiency under the conditions of universal salt iodization. Perimarine areas considered sufficient in iodine may show variations in iodine status in subpopulations under certain physiological conditions, such as pregnancy. An indicator of iodine status of the population is UIC, but the UIC/UCr ratio may be a more optimal indicator for pregnant women, to avoid possible overestimated results of iodine deficiency in pregnancy.


2012 ◽  
Vol 109 (12) ◽  
pp. 2276-2284 ◽  
Author(s):  
Stefanie Vandevijvere ◽  
Sihame Amsalkhir ◽  
Ahmed Bensouda Mourri ◽  
Herman Van Oyen ◽  
Rodrigo Moreno-Reyes

Low iodine intake during pregnancy may cause thyroid dysfunction in pregnant women and their newborn. In the present study, iodine status among a nation-wide representative sample of Belgian pregnant women in the first and third trimester of pregnancy was determined, and determinants of iodine status were assessed 1 year after the introduction of bread fortified with iodised salt. The women were selected according to a multistage proportionate-to-size sampling design. Urine samples were collected and a general questionnaire was completed face to face with the study nurse. The median urinary iodine concentration (UIC) among pregnant women (n1311) was 124·1 μg/l and 122·6 μg/g creatinine when corrected for urinary creatinine. The median UIC in the first trimester (118·3 μg/l) was significantly lower than that in the third trimester (131·0 μg/l) but significantly higher than among non-pregnant women (84·8 μg/l). Iodine-containing supplement intake was reported by 60·8 % of the women and 57·4 % of the women took this supplement daily. The risk of iodine deficiency was significantly higher in younger women, in women not taking iodine-containing supplements, with low consumption of milk and dairy drinks and during autumn. Women with a higher BMI had a higher risk of iodine deficiency but the risk was lower in women who reported alcohol consumption. The median UIC during pregnancy indicates iodine deficiency in Belgium and some women are at a higher risk of deficiency. The current low iodine intake in women of childbearing age precludes the correction of iodine deficiency in pregnant women supplemented with multivitamins containing 150 μg iodine as recommended.


2017 ◽  
Vol 39 (1) ◽  
pp. 49
Author(s):  
Djoko Kartono ◽  
Atmarita Atmarita ◽  
Abas B Jahari ◽  
Soekirman Soekirman ◽  
Doddy Izwardy

Iodine Deficiency Disorders (IDD) are the leading cause of goiter, cretinism, developmental delays and other health problems. Iodine deficiency is an important public health issue as it is a preventable cause of intellectual disability. While elimination of iodine deficiency is imperative, it should be noted that excessive intake of iodine can also lead to adverse health effects. This paper analyzed the iodine status using median urinary iodine concentration (MUIC) of school age children (SAC), women of reproductive age (WRA), and pregnant women (PW) who live in the same household from Riskesdas 2013. The total number of households included in the analysis was 13,811 households, from which 6,149 SAC (aged 6 – 12 years), 13,218 WRA (aged 15-49 years), and 578 PW (aged 15-49 years) were enumerated. The national MUIC of SAC, WRA and PWwas  in the normal range indicated that  the iodine status was adequate using WHO epidemiological criteria. Iodine status in some sub-populations indicated deficiency, however, in terms of geographic characteristics people who live in the urban has better iodine status compared to rural areas. Similarly, populations in richer economic quintiles had better iodine status. Only pregnant women in the 1st and 2nd quintile were deficient. Almost all regions in Indonesia showed the MUIC was in the normal adequate range, except NTT-NTB, Maluku-Papua, and East Java for pregnant women who tend to have lower MUIC (<150 µg/L). The status of iodized salt at the household was detected using both Rapid Test Kit/RTK as well as Titration. The result demonstrated a strong association between salt iodine level and iodine status. The MUIC for all three groups were lower when the iodine level in salt was lower, then increased when the levels of iodine content in salt increased. The iodine status of pregnant women consuming non-iodized salt was inadequate. The detrimental effect of iodine deficiency on the mental and physical development of children as well as on the women of reproductive age has been recognized. Indonesia still needs the salt iodization program to keep the iodine status in the normal range. In particular coverage with adequately iodized salt needs to be improved in order to improve the iodine status of pregnant women. For the prevention of Iodine disorders (insufficient), monitoring should be undertaken in regular basis to assess the MUIC, especially for pregnant women.


2021 ◽  
Vol 5 (1) ◽  
pp. 001-006
Author(s):  
Delshad Hossein ◽  
Mirmiran Parvin ◽  
Mehran Ladan ◽  
Tohidi Maryam ◽  
Azizi Fereidoun

During the last few decades painstaking efforts have been made to eliminate iodine deficiency throughout the world. Todays in regions where dietary iodine intake is adequate or borderline, the main focus is increasing dietary iodine supply in the target population during pregnancy and the first years of life. Objective: The aim of this study was to obtain longitudinal data on urinary iodine excretion and the changes of maternal thyroid parameters in two groups of healthy women with mild-to-moderate iodine deficiency and iodine sufficiency residing in an iodine replete area of Tehran capital city of IR Iran, for more than one decade. Research designs and methods: The present study is part of a cohort study, investigating the relative influences of iodine intake on thyroid size and function of mothers and their infants during and after pregnancy. A total of 500 pregnant women enrolled from two mother-child health care centers and was divided into group I, with median urinary iodine excretion (MUIE) < 150 µg/L, and group II with MUIE ≥ 150 µg/L. Sonographic thyroid volume measurement, urinary iodine excretion and thyroid function tests were measured sequentially in all pregnant women during the three trimesters (T) of pregnancy. Results: The mean ± SD age of the participants was 25.1 ± 5.1 years. The MUIE in group I and II in the first, second and third trimester were 123 and 250 µg/L, 127 and 166 µg/L, 120 and 150 µg/L, respectively. The MUIE in the third trimester of pregnancy in group I did not differ significantly from the values in the first and second trimesters (p = 0.67), but it did decline significantly in group II (p < 0.001). The median thyroid volume of subjects, in the first, second and third trimesters were 7.8, 8.2 and 8.1 ml in group I and 7.5, 8.0 and 8.4 ml in group II, respectively. No difference in thyroid volume was found between two groups in each of the three trimesters of pregnancy (p > 0.05). The mean (± SD) TSH concentration of subjects in first, second and third trimester was 2.3(± 2.6), 2.1(± 1.8), 2.3(± 1.7) mIU/L in group I and 2.1(± 3.1), 2.1(± 1.8) and 2.0(± 1.3) mIU/L in group II, respectively. The trend of TSH rising in group I was 26.7% and in group II it was 13.3%. The mean TSH value in three trimesters did not differ significantly in either groups (p > 0.05). The mean (± SD) total T4 concentrations of subjects in first, second and third trimesters were 13.2(± 3.4), 13.8(± 3.3), 13.0(± 2.9) µg/dl in group I and 13.1(± 3.2), 13.7(± 2.9), 13.4(± 3.2) µg/dl in group II, respectively. The mean total T4 value in three trimesters did not differ significantly in either groups (p > 0.05). There was no correlation between the thyroid volume and three observed parameters (UIE, total T4 and TSH) during the pregnancy in either groups. Conclusion: Even in areas with well-established universal salt iodization program, pregnancy could be a risk of having iodine deficiency and systematic dietary fortification needs to be implemented in this vulnerable group.


2017 ◽  
Vol 8 (1) ◽  
pp. 21-26
Author(s):  
PR Saha ◽  
R Maleque ◽  
S Biswas ◽  
R Haque ◽  
F Khondker ◽  
...  

Pregnancy is accompanied by profound alteration of thyroid economy and relative iodine deficiency. Sub-optimal thyroid function in pregnancy is associated with impaired neuro intellectual development. Urinary iodine concentration is increased during pregnancy. The aims of this study were to evaluate urinary iodine level in pregnant women and also to elucidate its correlation with thyroid parameters (TSH&FT4) in pregnancy. This was a case control study carried out in the Department of Biochemistry, jointly with the Antenatal and Thyroid Clinic of Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, during the period of July 2003 to June 2004. Urinary iodine excretion was measured in 100 subjects of age range 20-35 years. Among them 60 were pregnant at first trimester and primi gravid. Rest 40 were non-pregnant women who were taken as control. Urinary iodine was measured by Wet digestion based on Sandell-Kolthoff principle. Thyroid Stimulating hormone (TSH) and free thyroxin (FT4) were measured by the AxSYM (Abbott -USA) by applying Micro particle Enzyme Immune Assay (MEIA) principle. The data was reported as Mean± SE; the mean age of the pregnant and nonpregnant women were 25.03±0.48 yrs and 25.20±0.60 yrs respectively. No significant difference was found regarding age. The median urinary iodine of pregnant women was 438.13µg/l (range240.50-490.0) and that non pregnant women was 412.50µg/l (range 240.0-473.75µgl). Mean serum TSH were 1.29±0.15 and 1.97±0.18 mIU/L and mean serum FT4 were 14.51±0.41 and 16.30 ±0.41pmol/L in pregnant and non pregnant women respectively. Urinary iodine level was significantly increased in pregnant women compared to that of the non pregnant group (p<0.05). A significant negative correlation was found between urinary iodine and serum TSH (p<0.01) whereas a positive correlation between urinary iodine and serum FT4 level is p<0.05 in pregnant and p<0.01 in non pregnant group. Urinary iodine excretion is increased in pregnancy than that in non pregnant women. Clinically and biochemically all the subjects were euthyroid and excretion rate of iodine in all subjects were above the normal range.Bangladesh J Med Biochem 2015; 8(1): 21-26


2009 ◽  
Vol 12 (12) ◽  
pp. 2279-2284 ◽  
Author(s):  
Somchit Jaruratanasirikul ◽  
Pasuree Sangsupawanich ◽  
Ounjai Koranantakul ◽  
Prasin Chanvitan ◽  
Prasit Ruaengrairatanaroj ◽  
...  

AbstractObjectiveTo determine iodine intake and urinary iodine excretion (UIE) in a group of pregnant Thai women and the concentration of thyroid-stimulating hormone (TSH) in their neonates.DesignA prospective cohort study.SettingThree districts of Songkhla, southern Thailand.SubjectsTwo hundred and thirty-six pregnant women.ResultsA quarter of the participants lacked knowledge of iodine and the prevention of iodine deficiency, although 70 % used iodized salt. Those who did not use iodized salt stated that they had no knowledge about iodine (57 %) and no iodized salt was sold in their village (36 %). The median iodine intake in the three districts was 205–240 μg/d, with 53–74 % of pregnant women having iodine intake <250 μg/d. The median UIE in the three districts was 51–106 μg/l, with 24–35 % having UIE < 50 μg/l. The mean neonatal TSH was 2·40 (sd1·56) mU/l, with 8·9 % of neonates having TSH > 5 mU/l.ConclusionsThe studied women and their fetuses were at risk of mild iodine deficiency. About a quarter of the participants lacked knowledge of the importance of iodine. Education regarding the importance of iodine supplements and the promotion of iodized salt should be added to national health-care policies in order to prevent iodine-deficiency disorders, diseases that are subclinical but have long-term sequelae.


Sign in / Sign up

Export Citation Format

Share Document