Application of the Concave Arc Surface Collision Detection Method to Virtual Assembly

Author(s):  
xin shi ◽  
Li Tian

Abstract Exact location calculation between each part of a parallel groove clamp when connecting a power line with a jumper is addressed in this paper. The relative location between a concave clamp and convex power line cannot be measured directly in live-line manipulation. We propose a concave arc surface collision detection method embedded in motion simulation. The relative location between irregular concave parts in the manipulation process can be obtained. The method is found to be computationally less expensive than convex partitioning collision detection techniques. This research provides a foundation for further study on robot hand manipulation with irregular assembly.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1581
Author(s):  
Xiaolong Chen ◽  
Jian Li ◽  
Shuowen Huang ◽  
Hao Cui ◽  
Peirong Liu ◽  
...  

Cracks are one of the main distresses that occur on concrete surfaces. Traditional methods for detecting cracks based on two-dimensional (2D) images can be hampered by stains, shadows, and other artifacts, while various three-dimensional (3D) crack-detection techniques, using point clouds, are less affected in this regard but are limited by the measurement accuracy of the 3D laser scanner. In this study, we propose an automatic crack-detection method that fuses 3D point clouds and 2D images based on an improved Otsu algorithm, which consists of the following four major procedures. First, a high-precision registration of a depth image projected from 3D point clouds and 2D images is performed. Second, pixel-level image fusion is performed, which fuses the depth and gray information. Third, a rough crack image is obtained from the fusion image using the improved Otsu method. Finally, the connected domain labeling and morphological methods are used to finely extract the cracks. Experimentally, the proposed method was tested at multiple scales and with various types of concrete crack. The results demonstrate that the proposed method can achieve an average precision of 89.0%, recall of 84.8%, and F1 score of 86.7%, performing significantly better than the single image (average F1 score of 67.6%) and single point cloud (average F1 score of 76.0%) methods. Accordingly, the proposed method has high detection accuracy and universality, indicating its wide potential application as an automatic method for concrete-crack detection.


Author(s):  
Weilong Ding ◽  
◽  
Zangxin Wan ◽  
Yan Xu ◽  
Nelson Max ◽  
...  

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Tie Zhang ◽  
Peizhong Ge ◽  
Yanbiao Zou ◽  
Yingwu He

Abstract To ensure the human safety in the process of human–robot cooperation, this paper proposes a robot collision detection method without external sensors based on time-series analysis (TSA). In the investigation, first, based on the characteristics of the external torque of the robot, the internal variation of the external torque sequence during the movement of the robot is analyzed. Next, a time-series model of the external torque is constructed, which is used to predict the external torque according to the historical motion information of the robot and generate a dynamic threshold. Then, the detailed process of time-series analysis for collision detection is described. Finally, the real-machine experiment scheme of the proposed real-time collision detection algorithm is designed and is used to perform experiments with a six degrees-of-freedom (6DOF) articulated industrial robot. The results show that the proposed method helps to obtain a detection accuracy of 100%; and that, as compared with the existing collision detection method based on a fixed symmetric threshold, the proposed method based on TSA possesses smaller detection delay and is more feasible in eliminating the sensitivity difference of collision detection in different directions.


Sign in / Sign up

Export Citation Format

Share Document