scholarly journals Identification and Validation of a Novel Metabolism‑Related Prognostic Signature in Hepatocellular Carcinoma

2020 ◽  
Author(s):  
Zhihao Wang ◽  
Kidane Siele Embaye ◽  
Qing Yang ◽  
Lingzhi Qin ◽  
Chao Zhang ◽  
...  

Abstract Background: Given that metabolic reprogramming has been recognized as an essential hallmark of cancer cells, this study sought to investigate the potential prognostic values of metabolism-related genes(MRGs) for hepatocellular carcinoma (HCC) diagnosis and treatment. Methods: The metabolism-related genes sequencing data of HCC samples with clinical information were obtained from the International Cancer Genome Consortium(ICGC) and The Cancer Genome Atlas (TCGA). The differentially expressed MRGs were identified by Wilcoxon rank sum test. Then, univariate Cox regression analysis were performed to identify metabolism-related DEGs that related to overall survival(OS). A novel metabolism-related prognostic signature was developed using the least absolute shrinkage and selection operator (Lasso) and multivariate Cox regression analyses . Furthermore, the signature was validated in the TCGA dataset. Finally, cox regression analysis was applied to identify the prognostic value and clinical relationship of the signature in HCC. Results: A total of 178 differentially expressed MRGs were detected between the ICGA dataset and the TCGA dataset. We found that 17 MRGs were most significantly associated with OS by using the univariate Cox proportional hazards regression analysis in HCC. Then, the Lasso and multivariate Cox regression analyses were applied to construct the novel metabolism-relevant prognostic signature, which consisted of six MRGs. The prognostic value of this prognostic model was further successfully validated in the TCGA dataset. Further analysis indicated that this signature could be an independent prognostic indicator after adjusting to other clinical factors. Six MRGs (FLVCR1, MOGAT2, SLC5A11, RRM2, COX7B2, and SCN4A) showed high prognostic performance in predicting HCC outcomes, and were further associated with tumor TNM stage, gender, age, and pathological stage. Finally, the signature was found to be associated with various clinicopathological features. Conclusions: In summary, our data provided evidence that the metabolism-based signature could serve as a reliable prognostic and predictive tool for overall survival in patients with HCC.

2020 ◽  
Author(s):  
Zhihao Wang ◽  
Kidane Siele Embaye ◽  
Qing Yang ◽  
Lingzhi Qin Qin ◽  
Chao Zhang ◽  
...  

Abstract BackgroundGiven that metabolic reprogramming has been recognized as an essential hallmark of cancer cells, this study sought to investigate the potential prognostic values of metabolism-related genes(MRGs) for hepatocellular carcinoma (HCC) diagnosis and treatment.MethodsThe metabolism-related genes sequencing data of HCC samples with clinical information were obtained from the International Cancer Genome Consortium(ICGC) and The Cancer Genome Atlas (TCGA). The differentially expressed MRGs were identified by Wilcoxon rank sum test. Then, univariate Cox regression analysis were performed to identify metabolism-related DEGs that related to overall survival(OS) . A novel metabolism-related prognostic signature was developed using the least absolute shrinkage and selection operator (Lasso) and multivariate Cox regression analyses . Furthermore, the signature was validated in the TCGA dataset. Finally, the expression levels of hub genes were validated in cell lines by Western blotting (WB) and quantitative real-timePCR (qRT-PCR).ResultsA total of 178 differentially expressed MRGs were detected between the ICGA dataset and the TCGA dataset. We found that 17 MRGs were most significantly associated with OS by using the univariate Cox proportional hazards regression analysis in HCC. Then, the Lasso and multivariate Cox regression analyses were applied to construct the novel metabolism-relevant prognostic signature, which consisted of six MRGs. The prognostic value of this prognostic model was further successfully validated in the TCGA dataset. Further analysis indicated that this signature could be an independent prognostic indicator after adjusting to other clinical factors. Six MRGs (FLVCR1, MOGAT2, SLC5A11, RRM2, COX7B2, and SCN4A) showed high prognostic performance in predicting HCC outcomes. Finally, hub genes were chosen for validation and the expression of FLVCR1, SLC5A11, and RRM2 were significantly increased in human hepatocellular carcinoma cell lines when compared to normal human hepatic cell line, which were in agreement with the results of differential expression analysis.ConclusionsIn summary, our data provided evidence that the metabolism-based signature could serve as a reliable prognostic and predictive tool for overall survival in patients with HCC.


2020 ◽  
Author(s):  
Xinxin Xia ◽  
Hui Liu ◽  
Yuejun Li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. The immune system plays vital roles in HCC initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. Methods: Gene expression data were retrieved from The Cancer Genome Atlas database. Univariate Cox regression analysis was carried out to identify differentially expressed genes that associated with overall survival. The IRPS was established via Lasso and multivariate Cox regression analysis. Both Cox regression analyses were conducted to determine the independent prognostic factors for HCC. Next, the association between the IRPS and clinical-related factors were evaluated. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. Gene set enrichment analyses (GSEA) were conducted to understand the biological mechanisms of the IRPS. Results: A total of 62 genes were identified to be candidate immune-related prognostic genes. Transcription factors-immunogenes network was generated to explore the interactions among these candidate genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be an independent risk factor influencing the prognosis of HCC patients. The relationships between the IRPS and infiltration immune cells demonstrated that the IRPS was associated with immune cell infiltration. GSEA identified significantly enriched pathways, which might assist in elucidating the biological mechanisms of the IRPS. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients.Conclusions: The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.


2020 ◽  
Author(s):  
Xinxin Xia ◽  
Hui Liu ◽  
Yuejun Li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. The immune system plays vital roles in HCC initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. Methods: Gene expression data were retrieved from The Cancer Genome Atlas database. Univariate Cox regression analysis was carried out to identify differentially expressed genes that associated with overall survival. The IRPS was established via Lasso and multivariate Cox regression analysis. Both Cox regression analyses were conducted to determine the independent prognostic factors for HCC. Next, the association between the IRPS and clinical-related factors were evaluated. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. Gene set enrichment analyses (GSEA) were conducted to understand the biological mechanisms of the IRPS.Results: A total of 62 genes were identified to be candidate immune-related prognostic genes. Transcription factors-immunogenes network was generated to explore the interactions among these candidate genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be an independent risk factor influencing the prognosis of HCC patients. The relationships between the IRPS and infiltration immune cells demonstrated that the IRPS was associated with immune cell infiltration. GSEA identified significantly enriched pathways, which might assist in elucidating the biological mechanisms of the IRPS. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients. Conclusions: The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.


2020 ◽  
Author(s):  
Xinxin Xia ◽  
Hui Liu ◽  
Yuejun Li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. The immune system plays vital roles in HCC initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. Methods: Gene expression data were retrieved from The Cancer Genome Atlas database. Univariate Cox regression analysis was carried out to identify differentially expressed genes that associated with overall survival. The IRPS was established via Lasso and multivariate Cox regression analysis. Both Cox regression analyses were conducted to determine the independent prognostic factors for HCC. Next, the association between the IRPS and clinical-related factors were evaluated. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. Gene set enrichment analyses (GSEA) were conducted to understand the biological mechanisms of the IRPS. Results: A total of 62 genes were identified to be candidate immune-related prognostic genes. Transcription factors-immunogenes network was generated to explore the interactions among these candidate genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be an independent risk factor influencing the prognosis of HCC patients. The relationships between the IRPS and infiltration immune cells demonstrated that the IRPS was associated with immune cell infiltration. GSEA identified significantly enriched pathways, which might assist in elucidating the biological mechanisms of the IRPS. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients. Conclusions: The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fanbo Qin ◽  
Junyong Zhang ◽  
Jianping Gong ◽  
Wenfeng Zhang

Background. Accumulating studies have demonstrated that autophagy plays an important role in hepatocellular carcinoma (HCC). We aimed to construct a prognostic model based on autophagy-related genes (ARGs) to predict the survival of HCC patients. Methods. Differentially expressed ARGs were identified based on the expression data from The Cancer Genome Atlas and ARGs of the Human Autophagy Database. Univariate Cox regression analysis was used to identify the prognosis-related ARGs. Multivariate Cox regression analysis was performed to construct the prognostic model. Receiver operating characteristic (ROC), Kaplan-Meier curve, and multivariate Cox regression analyses were performed to test the prognostic value of the model. The prognostic value of the model was further confirmed by an independent data cohort obtained from the International Cancer Genome Consortium (ICGC) database. Results. A total of 34 prognosis-related ARGs were selected from 62 differentially expressed ARGs identified in HCC compared with noncancer tissues. After analysis, a novel prognostic model based on ARGs (PRKCD, BIRC5, and ATIC) was constructed. The risk score divided patients into high- or low-risk groups, which had significantly different survival rates. Multivariate Cox analysis indicated that the risk score was an independent risk factor for survival of HCC after adjusting for other conventional clinical parameters. ROC analysis showed that the predictive value of this model was better than that of other conventional clinical parameters. Moreover, the prognostic value of the model was further confirmed in an independent cohort from ICGC patients. Conclusion. The prognosis-related ARGs could provide new perspectives on HCC, and the model should be helpful for predicting the prognosis of HCC patients.


2021 ◽  
Author(s):  
Yan Li ◽  
Xiaoying Wang ◽  
Yue Han ◽  
Xun Li

Abstract Background: Long non-coding RNAs (lncRNAs) play an important role in angiogenesis, immune response, inflammatory response and tumor development and metastasis. m6 A (N6 - methyladenosine) is one of the most common RNA modifications in eukaryotes. The aim of our research was to investigate the potential prognostic value of m6A-related lncRNAs in ovarian cancer (OC).Methods: The data we need for our research was downloaded from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Pearson correlation analysis between 21 m6A regulators and lncRNAs was performed to identify m6A-related lncRNAs. Univariate Cox regression analysis was implemented to screen for lncRNAs with prognostic value. A least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression analyses was used to further reduct the lncRNAs with prognostic value and construct a m6A-related lncRNAs signature for predicting the prognosis of OC patients. Results: 275 m6A-related lncRNAs were obtained using pearson correlation analysis. 29 m6A-related lncRNAs with prognostic value was selected through univariate Cox regression analysis. Then, a seven m6A-related lncRNAs signature was identified by LASSO Cox regression. Each patient obtained a riskscore through multivariate Cox regression analyses and the patients were classified into high-and low-risk group using the median riskscore as a cutoff. Kaplan-Meier curve revealed that the patients in high-risk group have poor outcome. The receiver operating characteristic curve revealed that the predictive potential of the m6A-related lncRNAs signature for OC was powerful. The predictive potential of the m6A-related lncRNAs signature was successfully validated in the GSE9891, GSE26193 datasets and our clinical specimens. Multivariate analyses suggested that the m6A-related lncRNAs signature was an independent prognostic factor for OC patients. Moreover, a nomogram based on the expression level of the seven m6A-related lncRNAs was established to predict survival rate of patients with OC. Finally, a competing endogenous RNA (ceRNA) network associated with the seven m6A-related lncRNAs was constructed to understand the possible mechanisms of the m6A-related lncRNAs involed in the progression of OC.Conclusions: In conclusion, our research revealed that the m6A-related lncRNAs may affect the prognosis of OC patients and identified a seven m6A-related lncRNAs signature to predict the prognosis of OC patients.


2020 ◽  
Author(s):  
Qiang Cai ◽  
Shizhe Yu ◽  
Jian Zhao ◽  
Duo Ma ◽  
Long Jiang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is heterogeneous disease occurring in the background of chronic liver diseases. The role of glycosyltransferase (GT) genes have recently been the focus of research associating with the development of tumors. However, the prognostic value of GT genes in HCC remains not elucidated. This study aimed to demonstrate the GT genes related to the prognosis of HCC through bioinformatics analysis.Methods: The GT genes signatures were identified from the training set of The Cancer Genome Atlas (TCGA) dataset using univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses. Then, we analyzed the prognostic value of GT genes signatures related to the overall survival (OS) of HCC patients. A prognostic model was constructed, and the risk score of each patient was calculated as formula, which divided HCC patients into high- and low-risk groups. Kaplan-Meier (K-M) and Receiver operating characteristic (ROC) curves were used to assess the OS of HCC patients. The prognostic value of GT genes signatures was further investigated in the validation set of TCGA database. Univariate and multivariate Cox regression analyses were performed to demonstrate the independent factors on OS. Finally, we utilized the gene set enrichment analysis (GSEA) to annotate the function of these genes between the two risk categories. Results: In this study, we identified and validated 4 GT genes as the prognostic signatures. The K-M analysis showed that the survival rate of the high-risk patients was significantly lower than that of the low-risk patients. The risk score calculated with 4 gene signatures could predict OS for 3-, 5-, and 7-year in patients with HCC, revealing the prognostic ability of these gene signature. In addition, Multivariate Cox regression analyses indicated that the risk score was an independent prognostic factor for HCC. Functional analysis further revealed that immune-related pathways were enriched, and immune status in HCC were different between the two risk groups.Conclusion: In conclusion, a novel GT genes signature can be used for prognostic prediction in HCC. Thus, targeting GT genes may be a therapeutic alternative for HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Peng Liu ◽  
Jinhong Wei ◽  
Feiyu Mao ◽  
Zechang Xin ◽  
Heng Duan ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide and its incidence continues to increase year by year. Endoplasmic reticulum stress (ERS) caused by protein misfolding within the secretory pathway in cells and has an extensive and deep impact on cancer cell progression and survival. Growing evidence suggests that the genes related to ERS are closely associated with the occurrence and progression of HCC. This study aimed to identify an ERS-related signature for the prospective evaluation of prognosis in HCC patients. RNA sequencing data and clinical data of patients from HCC patients were obtained from The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC). Using data from TCGA as a training cohort (n=424) and data from ICGC as an independent external testing cohort (n=243), ERS-related genes were extracted to identify three common pathways IRE1, PEKR, and ATF6 using the GSEA database. Through univariate and multivariate Cox regression analysis, 5 gene signals in the training cohort were found to be related to ERS and closely correlated with the prognosis in patients of HCC. A novel 5-gene signature (including HDGF, EIF2S1, SRPRB, PPP2R5B and DDX11) was created and had power as a prognostic biomarker. The prognosis of patients with high-risk HCC was worse than that of patients with low-risk HCC. Multivariate Cox regression analysis confirmed that the signature was an independent prognostic biomarker for HCC. The results were further validated in an independent external testing cohort (ICGC). Also, GSEA indicated a series of significantly enriched oncological signatures and different metabolic processes that may enable a better understanding of the potential molecular mechanism mediating the progression of HCC. The 5-gene biomarker has a high potential for clinical applications in the risk stratification and overall survival prediction of HCC patients. In addition, the abnormal expression of these genes may be affected by copy number variation, methylation variation, and post-transcriptional regulation. Together, this study indicated that the genes may have potential as prognostic biomarkers in HCC and may provide new evidence supporting targeted therapies in HCC.


2021 ◽  
Author(s):  
Chen Xiong ◽  
Zhihuai Wang ◽  
Guifu Wang ◽  
Chi Zhang ◽  
Shengjie Jin ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is a malignancy with a poor prognosis. Some E3 ubiquitin-protein ligases play essential roles in HCC development. We aimed to explore a hub E3 ubiquitin-protein ligase gene and verify its association with prognosis and immune cell infiltration in HCC. We identified cell division cycle 20 (CDC20) as a hub E3 ubiquitin-protein ligase in HCC by determining the intersecting genes in a protein-protein interaction (PPI) network of differentially expressed genes (DEGs) in HCC data from the International Cancer Genome Consortium (ICGC) and 919 E3 ubiquitin-protein ligase genes from the Integrated annotations for Ubiquitin and Ubiquitin-like Conjugation Database (IUUCD). DEGs and their correlations with clinicopathological features were explored in The Cancer Genome Atlas (TCGA), ICGC, and Gene Expression Omnibus (GEO) databases via the Wilcoxon signed-rank test. The prognostic value of CDC20 was illustrated by Kaplan-Meier (K-M) curves and Cox regression analyses. Subsequently, the correlation between CDC20 and immune infiltration was demonstrated via the Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA). CDC20 expression was significantly higher in HCC than in normal tissues (all P < 0.05). K-M curves and Cox regression analyses showed that high CDC20 expression predicted a poor prognosis and might be an independent risk factor for HCC prognosis (P < 0.05). Additionally, the TIMER and GEPIA results indicated that CDC20 is correlated with the immune infiltration of CD8 + T cells, T cells (general), monocytes, and exhausted T cells. This research revealed the potential prognostic value of CDC20 in HCC and demonstrated that CDC20 might be an immune-associated therapeutic target in HCC because of its correlation with immune infiltration.


Sign in / Sign up

Export Citation Format

Share Document