scholarly journals A nanofluidic device for rapid and multiplexed SARS-CoV-2 serological antibody detection

Author(s):  
Thomas Mortelmans ◽  
Dimitrios Kazazis ◽  
Celestino Padeste ◽  
Philipp Berger ◽  
Xiaodan Li ◽  
...  

Abstract The outbreak of COVID-19 has led to a substantial death toll and has hindered the functioning of modern society, sending the world into a medical and economic crisis1,2. This underlined the importance of point-of-care diagnostics, as well as accurate, cost-effective serological antibody tests as well as point-of-care diagnostics to monitor the viral spread and contain pandemics and endemics. Here, we present a three-dimensional (3D) nanofluidic device for rapid and multiplexed detection of viral antibodies. The device is designed to size-dependently immobilize particles from a multi-particle mixture at predefined positions in nanochannels through capillary forces only, resulting in distinct trapping lines. We show that individual lines can be used as an on-chip fluorescence-linked immunosorbent assay for multiplexed detection of serological immunoglobulin antibodies against viral proteins with high sensitivity. Further device versatility is exhibited by on-bead color multiplexing for simultaneous detection of IgG and IgM antibodies in convalescent human serum and by concurrent detection of anti-spike (SARS-CoV-2) and anti-hemagglutinin (Influenza A) antibodies. The device’s applications can be further extended to detect a plethora of diseases simultaneously in a reliable and straightforward manner.

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 826
Author(s):  
Yanting Liu ◽  
Xuming Zhang

This review aims to summarize the recent advances and progress of plasmonic biosensors based on patterned plasmonic nanostructure arrays that are integrated with microfluidic chips for various biomedical detection applications. The plasmonic biosensors have made rapid progress in miniaturization sensors with greatly enhanced performance through the continuous advances in plasmon resonance techniques such as surface plasmon resonance (SPR) and localized SPR (LSPR)-based refractive index sensing, SPR imaging (SPRi), and surface-enhanced Raman scattering (SERS). Meanwhile, microfluidic integration promotes multiplexing opportunities for the plasmonic biosensors in the simultaneous detection of multiple analytes. Particularly, different types of microfluidic-integrated plasmonic biosensor systems based on versatile patterned plasmonic nanostructured arrays were reviewed comprehensively, including their methods and relevant typical works. The microfluidics-based plasmonic biosensors provide a high-throughput platform for the biochemical molecular analysis with the advantages such as ultra-high sensitivity, label-free, and real time performance; thus, they continue to benefit the existing and emerging applications of biomedical studies, chemical analyses, and point-of-care diagnostics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ramesh Yelagandula ◽  
◽  
Aleksandr Bykov ◽  
Alexander Vogt ◽  
Robert Heinen ◽  
...  

AbstractThe COVID-19 pandemic has demonstrated the need for massively-parallel, cost-effective tests monitoring viral spread. Here we present SARSeq, saliva analysis by RNA sequencing, a method to detect SARS-CoV-2 and other respiratory viruses on tens of thousands of samples in parallel. SARSeq relies on next generation sequencing of multiple amplicons generated in a multiplexed RT-PCR reaction. Two-dimensional, unique dual indexing, using four indices per sample, enables unambiguous and scalable assignment of reads to individual samples. We calibrate SARSeq on SARS-CoV-2 synthetic RNA, virions, and hundreds of human samples of various types. Robustness and sensitivity were virtually identical to quantitative RT-PCR. Double-blinded benchmarking to gold standard quantitative-RT-PCR performed by human diagnostics laboratories confirms this high sensitivity. SARSeq can be used to detect Influenza A and B viruses and human rhinovirus in parallel, and can be expanded for detection of other pathogens. Thus, SARSeq is ideally suited for differential diagnostic of infections during a pandemic.


NANO ◽  
2018 ◽  
Vol 13 (02) ◽  
pp. 1850022 ◽  
Author(s):  
Lishi Huang ◽  
Caihong Yuan ◽  
Wenli Chen ◽  
Fanshu Zeng ◽  
Hui Xu ◽  
...  

This study compared the susceptibility of different triangular silver nanoprisms (TSNPRs) towards the etching of hydrogen peroxide (H2O2), a catalytical product of glucose oxidase (GOx). The influence of capping agents and structural size have been explored towards the oxidation of silver nanoprisms. Results indicated that the etching of the TSNPRs was extremely effected by surface capping agents, in which citrate contributed a highest H2O2-sensitive effect in the absence of secondary capping ligands (e.g., glycerol and ethanol). Meanwhile, compared to bigger TSNPRs, smaller nanoprisms exhibited a different signal output of plasma resonance peak through intensity decrease rather than wavelength shift, making them more H2O2-etching susceptibile. In virtue of GOx etching-based system, TSNPRs with a small size and citrate capping were served as a substitute for big nanoprisms to sense glucose, offering a number of advantages such as high sensitivity, improved calibration, time-saving and extended detection ranges. Moreover, the small sized TSNPRs capping with citrate alone have been expected to be of great interest in the trace of GOx, providing an ultrahigh sensitive GOx etching-based analytical platform for point-of-care diagnostics towards other analytes (e.g., DNA, protein).


Parasitology ◽  
2014 ◽  
Vol 141 (14) ◽  
pp. 1841-1855 ◽  
Author(s):  
PAUL L. A. M. CORSTJENS ◽  
CLAUDIA J. DE DOOD ◽  
DIEUWKE KORNELIS ◽  
ELISA M. TJON KON FAT ◽  
R. ALAN WILSON ◽  
...  

SUMMARYThe potential of various quantitative lateral flow (LF) based assays utilizing up-converting phosphor (UCP) reporters for the diagnosis of schistosomiasis is reviewed including recent developments. Active infections are demonstrated by screening for the presence of regurgitated worm antigens (genus specific polysaccharides), whereas anti-Schistosomaantibodies may indicate ongoing as well as past infections. The circulating anodic antigen (CAA) in serum or urine (and potentially also saliva) is identified as the marker that may allow detection of single-worm infections. Quantitation of antigen levels is a reliable method to study effects of drug administration, worm burden and anti-fecundity mechanisms. Moreover, the ratio of CAA and circulating cathodic antigen (CCA) is postulated to facilitate identification of eitherSchistosoma mansoniorSchistosoma haematobiuminfections. The UCP-LF assays allow simultaneous detection of multiple targets on a single strip, a valuable feature for antibody detection assays. Although antibody detection in endemic regions is not a useful tool to diagnose active infections, it gains potential when the ratio of different classes of antibody specific for the parasite/disease can be determined. The UCP-LF antibody assay format allows this type of multiplexing, including testing a linear array of up to 20 different targets. Multiple test spots would allow detection of specific antibodies, e.g. against differentSchistosomaspecies or other pathogens as soil-transmitted helminths. Concluding, the different UCP-LF based assays for diagnosis of schistosomiasis provide a collection of tests with relatively low complexity and high sensitivity, covering the full range of diagnostics needed in control programmes for mapping, screening and monitoring.


2014 ◽  
Vol 19 (10) ◽  
Author(s):  
D Kalthoff ◽  
J Bogs ◽  
T Harder ◽  
C Grund ◽  
A Pohlmann ◽  
...  

In 2013, a novel influenza A virus of subtype H7N9 was transmitted from avian sources to humans in China, causing severe illness and substantial mortality. Rapid and sensitive diagnostic approaches are the basis of epidemiological studies and of utmost importance for the detection of infected humans and animals. We developed various quantitative reverse transcriptase PCR (RT-qPCR) assays for (i) the generic detection of the haemagglutinin (HA) gene of H7 viruses or the neuraminidase (NA) gene of N9 viruses, and (ii) the specific detection of HA and NA of the novel avian H7N9/2013 virus. The sensitivity of the newly developed assays was compared with previously published PCRs, and the specificity of all RT-qPCRs was examined using a panel of 42 different H7 and 16 different N9 isolates. Furthermore, we analysed the performance of the RT-qPCR assays with dilution series and diagnostic samples obtained from animal experiments. Our study provides a comprehensive set of RT-qPCR assays for the reliable detection of the novel avian H7N9 virus, with high sensitivity and improved and tailored specificity values compared with published assays. Finally, we also present data about the robustness of a duplex assay for the simultaneous detection of HA and NA of the avian influenza H7N9/2013 virus.


Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 97 ◽  
Author(s):  
Peijun He ◽  
Ioannis Katis ◽  
Robert Eason ◽  
Collin Sones

Paper-based lateral flow devices (LFDs) are regarded as ideal low-cost diagnostic solutions for point-of-care (POC) scenarios that allow rapid detection of a single analyte within a fluidic sample, and have been in common use for a decade. In recent years, there has been an increasing need for rapid and simultaneous detection of multiple analytes present within a single sample and to facilitate this, we report here a novel solution—detection using a multi-path LFD created via the precise partitioning of the single flow-path of a standard LFD using our previously reported laser direct-write (LDW) technique. The multiple flow-paths allow the simultaneous detection of the different analytes individually within each of the parallel channels without any cross-reactivity. The appearance of coloured test lines in individual channels indicates the presence of the different analytes within a sample. We successfully present the use of a LDW-patterned multi-path LFD for multiplexed detection of a biomarker panel comprising C-reactive protein (CRP) and Serum amyloid A-1 (SAA1), used for the diagnosis of bacterial infections. Overall, we demonstrate the use of our LDW technique in the creation of a novel LFD that enables multiplexed detection of two inflammation markers within a single LFD providing a detection protocol that is comparatively more efficient than the standard sequential multiplexing procedure.


Author(s):  
Uyanga Ganbaatar ◽  
Changchun Liu

As the COVID-19 pandemic continues, people are becoming infected at an alarming rate, individuals are unknowingly spreading disease, and more lives are lost every day. There is an immediate need for a simple, rapid, early and sensitive point-of-care testing for COVID-19 disease. However, current testing approaches do not meet such need. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods have received substantial attention for nucleic acid-based molecular testing due to their simplicity, high sensitivity and specificity. This review explores the various CRISPR-based COVID-19 detection methods and related diagnostic devices. As with any emerging technology, CRISPR/Cas-based nucleic acid testing methods have several challenges that must be overcome for practical applications in clinics and hospitals. More importantly, these detection methods are not limited to COVID-19 but can be applied to detect any type of pathogen, virus, and fungi that may threaten humans, agriculture, and food industries in resource-limited settings. CRISPR/Cas-based detection methods have the potential to become simpler, more reliable, more affordable, and faster in the near future, which is highly important for achieving point-of-care diagnostics.


MRS Advances ◽  
2019 ◽  
Vol 4 (22) ◽  
pp. 1299-1308 ◽  
Author(s):  
Yehoshua Auerbach ◽  
Rebecca Isseroff ◽  
Nicholas Clayton ◽  
Miguel Hulyalkar ◽  
Andrew Todt ◽  
...  

ABSTRACTWe have shown that molecular imprinting (MI) technology can be used to produce sensitive, robust, cost-effective biosensing systems with a real-time electrochemical readout that can be utilized for point of care diagnostics. Real time detection of biomarkers is essential when rapid, critical decisions need to be made, such as in situations where public health is threatened. Our biosensor has high sensitivity compared to standard methods like ELISA, and results are obtained within minutes, using inexpensive, accessible potentiometric readout technology. These biosensors utilize surface molecular imprinting of a self-assembling monolayer of hydroxy-terminated alkanethiol chains which form a crystalline ‘lock-and-key’ structure around a target analyte, allowing the sensors to detect and differentiate between bio-macromolecules of similar size and shape with high selectivity and sensitivity. The sensors are extremely versatile and able to detect a diverse range of molecules of varied chemical composition and structure. To fully exploit the sensors’ advantages, especially in remote, economically disadvantaged areas, it is important to quantify their durability and reusability. Biosensor chips were created to test the viability of hemoglobin detection and to evaluate the potential for sensor reusability when washed after detection testing. The successful readsorption of hemoglobin even after washing, accompanied by cyclic voltammetry data indicating the preservation of the SAM, indicate that these biosensors are reusable, significantly augmenting the device’s value. Potential applications include the analysis of complex chemical and biological processes such as stem cell differentiation and on-the-spot detection of diseases such as Zika.


Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Yousef Alqurashi ◽  
Mohamed Elsherif ◽  
Asail Hendi ◽  
Khamis Essa ◽  
Haider Butt

Measuring pH has become a major key for determining health conditions, and food safety. The traditional pH assessment approaches are costly and offer low sensitivity. Here, a novel pH sensor based on a pH-responsive hydrogel has been developed. A Fresnel lens pattern was replicated on the surface of the pH-responsive hydrogel using the replica mould method. The pH sensors were tested in a pH range of 4–7. Introducing various pH solutions to the pH sensor led to volumetric shifts as the hydrogel swelled with pH. Consequently, the dimensions of the replicated Fresnel lens changed, modifying the focal length and the focus efficiency of the optical sensor. As a result, the measured optical power at a fixed distance from the sensor changed with pH. The optical sensor showed the best performance in the acidic region when pH changed from 4.5 to 5.5, in which the recorded power increased by 13%. The sensor exhibited high sensitivity to pH changes with a short respond time in a reversible manner. The developed pH optical sensor may have applications in medical point-of-care diagnostics and wearable continuous pH detection devices.


2020 ◽  
Author(s):  
Kyu-Hwa Hur ◽  
Heungsup Sung ◽  
Mi-Na Kim

ABSTRACTWe compared two molecular point-of-care tests, the cobas Influenza A/B & RSV (cobas Liat) and the Simplexa Flu A/B & RSV (Simplexa). A total of 236 respiratory specimens from patients referred for respiratory viruses testing were retrospectively evaluated; 53 specimens tested positive for each of Flu A, Flu B, and RSV, and 77 specimens tested negative based on the results of the reference method, i.e. the Seegene Allplex Respiratory Panel 1/2/3 (Seegene, Seoul, Korea). The turnaround time (TAT) was 20 min per specimen for cobas Liat and 78 min per eight specimens for Simplexa. The numbers of invalid results were one (0.4%) in cobas Liat and 10 (4.2%) in Simplexa (p < 0.05). All results were consistent with those of the reference method in cobas Liat. The sensitivity and specificity for Flu A, Flu B and RSV A were 100% with Simplexa. However, the sensitivity for RSV B was 80.0% with Simplexa, which was significantly lower than that of cobas Liat (p < 0.05). Comparison of the cycle threshold (Ct) values for RSV with Simplexa and the reference method showed the correlation as continuous variables (p < 0.001) with a higher propensity for obtaining Ct values with Simplexa, the exception being the six false negative results; their Ct values were more than 30 in the reference method. Cobas Liat showed high sensitivity for the detection of RSV B with rapid TAT, and a good workflow efficiency.


Sign in / Sign up

Export Citation Format

Share Document