C−H•••F−C Interactions: A Guide for Designing Fluorous Monodentate Ligands for the Highly Linear-Selective Hydroformylation at Near-Ambient Pressure

Author(s):  
Yuchao Deng ◽  
Xiaofang Liu ◽  
Baiyin Wei ◽  
Zhimin Zhou ◽  
Kaimin Hua ◽  
...  

Abstract Organofluorine compounds often exhibit unique catalytic capabilities with novel structural scaffold, reactivity and mechanisms. Herein, we report a Rh-catalyzed hydroformylation under mild conditions using monodentate phosphite ligands P(OCH2CF3)3 (TTFP) and P(OCH2CF2CH3)3 (TDFP). The ligand were designed with the principle that the inclusion of fluorine-rich group can significantly change the physical and chemical properties of the complex through H•••F hydrogen bonds, the existence of which has been confirmed by crystal-packing studies. These monodentate phosphite ligands self-assemble to form bidentate ligands through C–H•••F–C interactions, and catalysts based on these ligands deliver extremely high regioselectivities in hydroformylation. Aldehydes were formed with up to 92% chemoselectivity, with linear aldehydes formed in high regioselectivity (n:iso=28/1) under a syngas pressure of only 2 atm.

2020 ◽  
Vol 26 (38) ◽  
pp. 4847-4857
Author(s):  
Marta Marín-Luna ◽  
Rosa M. Claramunt ◽  
José Elguero ◽  
Ibon Alkorta

Azoles are a family of five-membered azacyclic compounds with relevant biological and pharmacological activity. Different subclasses of azoles are defined depending on the atomic arrangement and the number of nitrogen atoms present in the ring: pyrazoles, indazoles, imidazoles, benzimidazoles, triazoles, benzotriazoles, tetrazoles and pentazoles. The complete characterization of their structure and the knowledge about their crystal packing and physical and chemical properties are of vital importance for the advancement in the design of new azole-containing drugs. In this review, we report the latest recent contributions to azole chemistry, in particular, those in which theoretical studies have been performed.


2014 ◽  
Vol 70 (a1) ◽  
pp. C651-C651
Author(s):  
Kevin Eccles ◽  
Robin Morrison ◽  
Abhijeet Sinha ◽  
Anita Maguire ◽  
Simon Lawrence

Crystal engineering has been defined as "the understanding of intermolecular interactions in the context of crystal packing and the utilisation of such understanding in the design of new solids with desired physical and chemical properties".[1] Halogen bonding is a significant type of intermolecular interaction involving a halogen atom with neutral or anionic components which has recently been exploited for the formation of multicomponent crystalline materials. Sulfur can exist in a variety of different oxidation states, giving rise to a wide variety of different functional groups that are potentially available for halogen bonding. We have recently reported our investigations with sulfoxide,[2] sulfone[2] and sulfinamide functional groups.[3] Herein we extend this work to include the thioamide functional group and compare it with its more extensively studied amide analogue. Investigation into the propensity for primary aromatic thioamides to form halogen interactions through the thiocarbonyl (C=S) functional group. A range of substituent aromatic primary thioamides containing different electronic substituents on the aromatic ring were synthesized and investigated for cocrystallisation. These cocrystals are held together by a combination of weak hydrogen bonding (N–H···S=C) and strong halogen interactions (C–X···S=C).


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Author(s):  
O.S. Bezuglova ◽  

Rostov Region belongs to the highly protected natural territories characterized by the continuous plowing. There territories are the only reserves with the soils preserved in their natural state. However, these areas often lack detailed information about the soils quality and composition. Surveying soils on these territories is crucial for determination of their basic physical and chemical properties. The resulted compilation of soil maps could lay a foundation for creating the Red Book of Soils and the formation of a section in the soil-geographical database of the Russian Federation. Subsequently, such information can be used as a background data for the main types of soils in the region. It will be also valuable during monitoring and justification of conservation measures.


Sign in / Sign up

Export Citation Format

Share Document