scholarly journals Construction of Intelligent Integrated Model Framework for the Workshop Manufacturing System Via Digital Twin

Author(s):  
Zhongyu Zhang ◽  
Zhenjie Zhu ◽  
Jinsheng Zhang ◽  
Jingkun Wang

Abstract With the drastic development of the globally advanced manufacturing industry, transition of the original production pattern from traditional industries to advanced intelligence is completed with the least delay possible, which are still facing new challenges. Because the timeliness, stability and reliability of them is significantly restricted due to lack of the real-time communication. Therefore, an intelligent workshop manufacturing system model framework based on digital twin is proposed in this paper, driving the deep inform integration among the physical entity, data collection, and information decision-making. The conceptual and obscure of the traditional digital twin is refined, optimized, and upgraded on the basis of the four-dimension collaborative model thinking. A refined nine-layer intelligent digital twin model framework is established. Firstly, the physical evaluation is refined into entity layer, auxiliary layer and interface layer, scientifically managing the physical resources as well as the operation and maintenance of the instrument, and coordinating the overall system. Secondly, dividing the data evaluation into the data layer and the processing layer can greatly improve the flexible response-ability and ensure the synchronization of the real-time data. Finally, the system evaluation is subdivided into information layer, algorithm layer, scheduling layer, and functional layer, developing flexible manufacturing plan more reasonably, shortening production cycle, and reducing logistics cost. Simultaneously, combining SLP and artificial bee colony are applied to investigate the production system optimization of the textile workshop. The results indicate that the production efficiency of the optimized production system is increased by 34.46%.

2021 ◽  
Vol 343 ◽  
pp. 03005
Author(s):  
Florina Chiscop ◽  
Bogdan Necula ◽  
Carmen Cristiana Cazacu ◽  
Cristian Eugen Stoica

The topic of this paper represents our research in the process of creating a virtual model (digital twin) for a fast-food company production chain starting with the moment when a customer launches an order, following with the processing of that order, until the customer receives it. The model will describe elements that are included in this process such as equipment, human resources and the necessary space that is needed to host this layout. The virtual model created in a simulation platform will be a replicate of a real fast-food company, thus helping us observe the real time dynamic of this production system. Using WITNESS HORIZON 23 we will construct the model of the layout based on real time data received from the fast-food company. This digital twin will be used to manage the production chain material flow, evaluating the performance of the system architecture in various scenarios. In order to obtain a diagnosis of the system’s performance we will simulate the workflow running through preliminary architecture in compliance with the real time behaviour to identify the bottlenecks and blockages in the flow trajectory. In the end we will propose two different optimised architectures for the fast-food company production chain.


Author(s):  
Jay Lee ◽  
Xiaodong Jia ◽  
Qibo Yang ◽  
Keyi Sun ◽  
Xiang Li

Abstract In the wake of COVID-19, significant influence on the manufacturing industries has been observed in the past year due to the restrictions of in-person communications and interactions. As a consequence, manufacturing efficiency has reduced remarkably all over the world. Despite the great harm to the industrial operations under the pandemic, the opportunities for remote collaborative manufacturing system also arise. Effective and efficient remote manufacturing systems for the real industries have been highly demanded. Through the integration of industrial internet and digital twin systems, the remote manufacturing system can be largely facilitated. This paper proposes a general framework for the remote manufacturing system during the COVID-19 era. The concept of the intelligent collaborative remote manufacturing system is firstly reviewed, as well as discussions of the current pandemic situation and its influence on the industries. The current commercial platforms of the systems are also presented. A case study on the lighthouse factories at the Foxconn Technology Group is finally presented for understanding the implementation of the proposed strategy. The effectiveness of the framework has been validated in the real industrial scenarios, and great economic and operational benefits have been obtained. The proposed framework offers a promising solution for the remote manufacturing system under the current pandemic.


2020 ◽  
Vol 306 ◽  
pp. 02005
Author(s):  
Jin Cao ◽  
Junliang Wang ◽  
Junqing Lu

Compressor is a typical high-end discrete product,with the shortening of product life cycle and the enhancement of the degree of product customization, the traditional compressor manufacturing system architecture cannot meet the requirements of comprehensive digital management of compressor from body scheme design to parts production line, logistics management, operation and maintenance monitoring and evaluation. This paper presents a compressor manufacturing system architecture based on digital twinning, and establishes an Internet platform for compressor industry oriented to remote coordination from three aspects of compressor design, production, operation and maintenance. The platform includes industrial Internet infrastructure layer, physical space entity model layer, virtual space multidimensional model layer, physical space and virtual space multidimensional model correlation and mapping layer, big data intelligent analysis decision-making layer, and digital twin application layer. Through the establishment of the compressor product design and simulation model of digital twin, compressor production process digital twin model, compressor fault diagnosis and remote operations digital twin model, implementation is based on the number of compressor collaboration in manufacturing industrial Internet platform twin system, leading the transformation and upgrading of intelligent manufacturing industry, compressor industry sustainable development ability and international competitiveness.


Author(s):  
Wesley Ellgass ◽  
Nathan Holt ◽  
Hector Saldana-Lemus ◽  
Julian Richmond ◽  
Ali Vatankhah Barenji ◽  
...  

With the developments and applications of the advanced information technologies such as cloud computing, internet of thing, artificial intelligence and virtual reality, industry 4.0 and smart manufacturing era are coming. In this respect, one of the specific challenges is to achieve a connection of physical resources on the shop floor with virtual resources, for real-time response, real time process optimization, and simulation, which is merged by big data problem. In this respect, Digital Twins (DT) concept is introduced as a key technology, which includes physical resources, virtual resources, service system, and digital twin data. DT considers current condition of physical resource and prediction of future events to make a responsive decision. However, due to the complexity of building a digital equivalent in virtual space to its physical counterpart, very little applications have been developed with this purpose, especially in the industrial manufacturing area. Therefore, the types of data and technology required to build the DT for a manufacturing system are presented in this work, trying to develop a framework of DT based manufacturing system, which is supported by the virtual reality for virtualization of physical resources.


Sign in / Sign up

Export Citation Format

Share Document