Synbiotic Supplementation Modulates Gut Microbiota, Regulates Beta-Catenin Expression And Prevents Weight Gain in ob/ob Mice
Abstract Background: The aim of this study was to examine the impact of synbiotic supplementation in obesity and microbiota in ob/ob mice. 20 animals were divided into four groups: Obese Treated (OT), Control (OC), Lean Treated (LT) and Control (LC). All animals received standard diet for 8 weeks. Treated groups received a synbiotic in water while nontreated groups received water. After 8 weeks, all animals were sacrificed and gut tissue mRNA isolation and stool samples by microbiota analysis were collected. Beta-catenin, occludin, cadherin and zonulin were analyzed in gut tissue by RT-qPCR. Results: The synbiotic supplementation reduced body weight gain in OT comparing with OC (p=0.0398), increase of Enterobacteriaceae (p=0.005) and decrease of Cyanobacteria (p=0.047), Clostridiaceae (p=0.026), Turicibacterales (p=0.005) and Coprococcus (p=0.047). A significant reduction of Sutterella bacteria (p=0.009) and Turicibacter (p=0.005) was observed in LT compared to LC. Alpha and beta diversities were differ between all treated groups. Beta-catenin gene expression was significantly decreased in the gut tissue of OT (p≤0.0001) when compared to other groups. No changes were observed in occludin, cadherin and zonulin gene expression in the gut tissue. Conclusion: The synbiotics supplementation prevents excessive weight gain, modulates the gut microbiota, and reduces beta-catenin expression in ob/ob mice.