scholarly journals Attribute Reduction Algorithm of Neighborhood Rough Set Based on Supervised Granulation and Its Application

Author(s):  
li zou ◽  
Siyuan Ren ◽  
Yibo Sun ◽  
Xinhua Yang

Abstract In neighborhood rough set theory, attribute reduction based on measure of information has important application significance. The influence of different decision classes was not considered for calculation of traditional conditional neighborhood entropy, and the improvement of algorithm based on conditional neighborhood entropy mainly includes of introducing multi granularity and different levels, while the mutual influence between samples with different labels is less considered. To solve this problem, this paper uses the supervised strategy to improve the conditional neighborhood entropy of three-layer granulation. By using two different neighborhood radii to adjust the mutual influence degree of different label samples, and by considering the mutual influence between conditional attributes through the feature complementary relationship, a neighborhood rough set attribute reduction algorithm based on supervised granulation is proposed. Experiment results on UCI data sets show that the proposed algorithm is superior to the traditional conditional neighborhood entropy algorithm in both aspects of reduction rate and reduction accuracy. Finally, the proposed algorithm is applied to the evaluation of fatigue life influencing factors of titanium alloy welded joints. The results of coupling relationship analysis show that the effect of joint type should be most seriously considered in the calculation of stress concentration factor. The results of influencing factors analysis show that the stress range has the highest weight among all the fatigue life influencing factors of titanium alloy welded joint.

Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 117 ◽  
Author(s):  
Li Zou ◽  
Yibo Sun ◽  
Xinhua Yang

In order to obtain comprehensive assessment of the factors influencing fatigue life and to further improve the accuracy of fatigue life prediction of welded joints, soft computing methods, including entropy-based neighborhood rough set reduction algorithm, the particle swarm optimization (PSO) algorithm and support vector regression machine (SVRM) are combined to construct a fatigue life prediction model of titanium alloy welded joints. By using an entropy-based neighborhood rough set reduction algorithm, the influencing factors of the fatigue life of titanium alloy welded joints such as joint type, plate thickness, etc. are analyzed and the reduction results are obtained. Fatigue characteristic domains are proposed and determined subsequently according to the reduction results. The PSO-SVRM model for fatigue life prediction of titanium alloy welded joints is established in the suggested fatigue characteristic domains. Experimental results show that by taking into account the impact of joint type, the PSO-SVRM model could better predict the fatigue life of titanium alloy welded joints. The PSO-SVRM model indicates the relationship between fatigue life and fatigue life influencing factors in multidimensional space compared with the conventional least-square S-N curve fitting method, it could predict the fatigue life of the titanium alloy welded joints more accurately thus helps to the reliability design of the structure.


2021 ◽  
pp. 1-15
Author(s):  
Rongde Lin ◽  
Jinjin Li ◽  
Dongxiao Chen ◽  
Jianxin Huang ◽  
Yingsheng Chen

Fuzzy covering rough set model is a popular and important theoretical tool for computation of uncertainty, and provides an effective approach for attribute reduction. However, attribute reductions derived directly from fuzzy lower or upper approximations actually still occupy large of redundant information, which leads to a lower ratio of attribute-reduced. This paper introduces a kind of parametric observation sets on the approximations, and further proposes so called parametric observational-consistency, which is applied to attribute reduction in fuzzy multi-covering decision systems. Then the related discernibility matrix is developed to provide a way of attribute reduction. In addition, for multiple observational parameters, this article also introduces a recursive method to gradually construct the multiple discernibility matrix by composing the refined discernibility matrix and incremental discernibility matrix based on previous ones. In such case, an attribute reduction algorithm is proposed. Finally, experiments are used to demonstrate the feasibility and effectiveness of our proposed method.


2014 ◽  
Vol 556-562 ◽  
pp. 4820-4824
Author(s):  
Ying Xia ◽  
Le Mi ◽  
Hae Young Bae

In study of image affective semantic classification, one problem is the low classification accuracy caused by low-level redundant features. To eliminate the redundancy, a novel image affective classification method based on attributes reduction is proposed. In this method, a decision table is built from the extraction of image features first. And then valid low-level features are determined through the feature selection process using the rough set attribute reduction algorithm. Finally, the semantic recognition is done using SVM. Experiment results show that the proposed method improves the accuracy in image affective semantic classification significantly.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 133565-133576
Author(s):  
Panpan Chen ◽  
Menglei Lin ◽  
Jinghua Liu

2014 ◽  
Vol 644-650 ◽  
pp. 2120-2123 ◽  
Author(s):  
De Zhi An ◽  
Guang Li Wu ◽  
Jun Lu

At present there are many data mining methods. This paper studies the application of rough set method in data mining, mainly on the application of attribute reduction algorithm based on rough set in the data mining rules extraction stage. Rough set in data mining is often used for reduction of knowledge, and thus for the rule extraction. Attribute reduction is one of the core research contents of rough set theory. In this paper, the traditional attribute reduction algorithm based on rough sets is studied and improved, and for large data sets of data mining, a new attribute reduction algorithm is proposed.


Sign in / Sign up

Export Citation Format

Share Document