scholarly journals CRISPR / Cas-9 Vector System: Targets UL-39 and Inhibits HSV-1 Replication in Vitro

Author(s):  
Jéssica Vasques Raposo ◽  
Luciana Rodrigues Carvalho Barros ◽  
Lauana Ribas Torres ◽  
Rafaela Barbosa da Silva Pinto ◽  
Amanda de Oliveira Lopes ◽  
...  

Abstract HSV-1 affects approximately 67% of the world population. Here, we sought to use the CRISPR / Cas9 system with the UL39 target, essential for virus replication. The sgRNA sequence was inserted into plasmid (PX459-UL39). Vero cells were transfected with PX459-UL39, and inhibition of viral replication was assessed 24 and 48 hours later using plaque assays and fluorescence and qPCR. Fluorescence analyzes revealed the presence of anti-HSV-1 CRISPR/Cas9 within Vero cells, and qPCR showed that the viral load decreased by> 95% of cells transfected with anti-HSV-1 CRISPR / Cas9. Our data demonstrate the usefulness of the PX459-UL39 to inhibit HSV-1 infection.

2020 ◽  
Vol 18 ◽  
Author(s):  
Marlyanne Maria Carvalho Silva de Almeida ◽  
Renato Ferreira de Almeida Júnior ◽  
Ana Alice de Aquino ◽  
Lívia de Lourdes Pinto ◽  
Paula Renata Lima Machado ◽  
...  

Background: - According to the World Health Organization (WHO), two fifths of the world population is at risk of infection by DENV. There are not any safe and effective vaccine established. Sulfated glycosaminoglycans such as heparin, used as anticoagulant inhibit the initial step of dengue viral replication. Recently, an isolated heparin analogue Goniopsis cruentata (cCTH) has presented low anticoagulant effect with reduced bleeding risk. Methods : - The antiviral activity of cCTH and heparin compounds against DENV-2 in Vero cell culture was determined by quantitative RT-PCR (qRT-PCR) and titration. For this, it was carried out four trials: treatment of the cells for 2 h before viral inoculation, concomitant viral inoculation treatment, treatment after viral inoculation and virucidal assay. Subsequently, the culture supernatants were collected for periods of 24, 48 and 72 h. Results: - Our results have been demonstrated that cCTH and heparin showed antiviral activity against DENV-2. Conclusion : - These data suggest that both compounds prevented viral replication in cultured Vero cells.


2021 ◽  
Vol 16 (7) ◽  
pp. 15-22
Author(s):  
Paul Giftson ◽  
Jerrine Joseph ◽  
Revathy Kalyanasundaram ◽  
V. Ramesh Kumar ◽  
Wilson Aruni

Tuberculosis (TB) is a communicable disease and remains one of the top 10 causes of death worldwide. One fourth of the world population is infected with TB at a risk of developing disease. The increase in the incidence of drug resistant TB around the world urges the need to develop a new candidate to fight against the disease. Plants were considered as the rich source of bioactive components to be used as potential drugs. Medicinal plants are used in pure as well as crude materials for their medicinal properties. Our research aims in identifying the phyto-molecules which have anti- tuberculosis property. Four medicinal plants namely, Acalyphaciliata (Kuppaimeni), Solanumtrilobatum (Thuthuvalai), Momordicacharantia (Bitter Gourd) and Sennaauriculata (Avaram) were chosen to evaluate their antimicrobial activity focusing on anti-tubercular activity. The methanol extracts of the medicinal plants showed significant inhibitory activity against bacterial and fungal pathogens. Sennaauriculata methanol extracts showed activity against S. aureus, E. coli, P. aeruginosa and C. albicans. In the screening of antimycobacterial activity done by LRP assay, among the plant extracts tested, the hexane crude extracts of Momordicacharantia (Bitter Gourd) showed 82.2% and 81.03% of inhibition against M. tuberculosis H37Rv at 500µg/ml and 250µg/ml concentration respectively. Similarly, the methanol crude extracts of Momordicacharantia showed 87.14% and 63.55% of inhibition at 500µg/ml and 250µg/ml concentration respectively.


2003 ◽  
Vol 77 (2) ◽  
pp. 1382-1391 ◽  
Author(s):  
Michiko Tanaka ◽  
Hiroyuki Kagawa ◽  
Yuji Yamanashi ◽  
Tetsutaro Sata ◽  
Yasushi Kawaguchi

ABSTRACT In recent years, several laboratories have reported on the cloning of herpes simplex virus type 1 (HSV-1) genomes as bacterial artificial chromosomes (BACs) in Escherichia coli and on procedures to manipulate these genomes by using the bacterial recombination machinery. However, the HSV-BACs reported so far are either replication incompetent or infectious, with a deletion of one or more viral genes due to the BAC vector insertion. For use as a multipurpose clone in research on HSV-1, we attempted to generate infectious HSV-BACs containing the full genome of HSV-1 without any loss of viral genes. Our results were as follows. (i) E. coli (YEbac102) harboring the full-length HSV-1 genome (pYEbac102) in which a BAC flanked by loxP sites was inserted into the intergenic region between UL3 and UL4 was constructed. (ii) pYEbac102 was an infectious molecular clone, given that its transfection into rabbit skin cells resulted in production of infectious virus (YK304). (iii) The BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus YK304 by coinfection of Vero cells with YK304 and a recombinant adenovirus, AxCANCre, expressing Cre recombinase. (iv) As far as was examined, the reconstituted viruses from pYEbac102 could not be phenotypically differentiated from wild-type viruses in vitro and in vivo. Thus, the viruses grew as well in Vero cells as did the wild-type virus and exhibited wild-type virulence in mice on intracerebral inoculation. (v) The infectious molecular clone pYEbac102 is in fact useful for mutagenesis of the HSV-1 genome by bacterial genetics, and a recombinant virus carrying amino acid substitutions in both copies of the α0 gene was generated. pYEbac102 will have multiple applications to the rapid generation of genetically engineered HSV-1 recombinants in basic research into HSV-1 and in the development of HSV vectors in human therapy.


2021 ◽  
Author(s):  
Harun ALP ◽  
Hasan ASİL ◽  
Demet Duman

Abstract Today, the coronavirus epidemic, which caused the death of 79 million cases and 1743 thousand people in 218 countries around the world, continues to increase its impact all over the world. Researchers are still trying to develop an effective solution against covid-19, including vaccines and drugs. However, there are few studies that determine the effect of natural products obtained from plants on covid-19. Medicinal and aromatic plants have been used for therapeutic purposes since the existence of humanity. In this study, the effects of some important medicinal plants including Licorice (Glycyrrhiza glabra), Saffron (Crocus sativus L.), Nigella (Nigella sativa L.), Laurel (Lauris nobilis), Karabaş (Lavandula stoechas), and Zahter (Thymbra spicata L. var. Spicata) against Covid-19 were investigated in vitro conditions. The six plants were evaluated for cytotoxic effect on Vero cells and determining inhibition of viral replication in Vero-E6 cells at concentrations of broad-spectrum antiviral non-cytotoxic against Covid-19 in cell culture and an additional antiviral effect against Covid-19. According to the results, the five examined plants (Saffron, Nigella, Laurel, Karabaş, Zahter) were ineffective against Covid-19 in vitro conditions. Interisingly, the water extract obtained from the root of the licorice plant (Glycyrrhiza glabra) inhibited Covid-19 in vitro conditions in the 2nd dilution (1: 4) following the initial concentration in Vero-E6 cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xianghe Meng ◽  
Darong Yang ◽  
Rong Yu ◽  
Haizhen Zhu

It has been reported that IFN-λs inhibit HCV replication in vitro. But the mechanisms of how IL-28A conducts antiviral activity and the functions of IL-28A-induced ISGs (IFN-stimulated genes) are not fully understood. In this study, we found that IL-28A has the antiviral effect on HCV life cycle including viral replication, assembly, and release. IL-28A and IFN-αsynergistically inhibit virus replication. EPSTI1 (epithelial-stromal interaction 1), one of IL-28A-induced ISGs, plays a vital role in IL-28A-mediated antiviral activity. Furthermore, forced expression of EPSTI1 effectively inhibits HCV replication in the absence of interferon treatment, and knockdown of EPSTI1 contributes to viral enhancement. EPSTI1 can activate PKR promoter and induce several PKR-dependent genes, including IFN-β, IFIT1, OAS1, and RNase L, which is responsible for EPSTI1-mediated antiviral activity.


2002 ◽  
Vol 76 (22) ◽  
pp. 11541-11550 ◽  
Author(s):  
Bruno Sainz ◽  
William P. Halford

ABSTRACT In vivo evidence suggests that T-cell-derived gamma interferon (IFN-γ) can directly inhibit the replication of herpes simplex virus type 1 (HSV-1). However, IFN-γ is a weak inhibitor of HSV-1 replication in vitro. We have found that IFN-γ synergizes with the innate IFNs (IFN-α and -β) to potently inhibit HSV-1 replication in vitro and in vivo. Treatment of Vero cells with either IFN-β or IFN-γ inhibits HSV-1 replication by <20-fold, whereas treatment with both IFN-β and IFN-γ inhibits HSV-1 replication by ∼1,000-fold. Treatment with IFN-β and IFN-γ does not prevent HSV-1 entry into Vero cells, and the inhibitory effect can be overcome by increasing the multiplicity of HSV-1 infection. The capacity of IFN-β and IFN-γ to synergistically inhibit HSV-1 replication is not virus strain specific and has been observed in three different cell types. For two of the three virus strains tested, IFN-β and IFN-γ inhibit HSV-1 replication with a potency that approaches that achieved by a high dose of acyclovir. Pretreatment of mouse eyes with IFN-β and IFN-γ reduces HSV-1 replication to nearly undetectable levels, prevents the development of disease, and reduces the latent HSV-1 genome load per trigeminal ganglion by ∼200-fold. Thus, simultaneous activation of IFN-α/β receptors and IFN-γ receptors appears to render cells highly resistant to the replication of HSV-1. Because IFN-α or IFN-β is produced by most cells as an innate response to virus infection, the results imply that IFN-γ secreted by T cells may provide a critical second signal that potently inhibits HSV-1 replication in vivo.


2002 ◽  
Vol 76 (21) ◽  
pp. 10776-10784 ◽  
Author(s):  
Bin Lu ◽  
Chien-Hui Ma ◽  
Robert Brazas ◽  
Hong Jin

ABSTRACT The phosphoprotein (P protein) of respiratory syncytial virus (RSV) is a key component of the viral RNA-dependent RNA polymerase complex. The protein is constitutively phosphorylated at the two clusters of serine residues (116, 117, and 119 [116/117/119] and 232 and 237 [232/237]). To examine the role of phosphorylation of the RSV P protein in virus replication, these five serine residues were altered to eliminate their phosphorylation potential, and the mutant proteins were analyzed for their functions with a minigenome assay. The reporter gene expression was reduced by 20% when all five phosphorylation sites were eliminated. Mutants with knockout mutations at two phosphorylation sites (S232A/S237A [PP2]) and at five phosphorylation sites (S116L/S117R/S119L/S232A/S237A [PP5]) were introduced into the infectious RSV A2 strain. Immunoprecipitation of 33Pi-labeled infected cells showed that P protein phosphorylation was reduced by 80% for rA2-PP2 and 95% for rA2-PP5. The interaction between the nucleocapsid (N) protein and P protein was reduced in rA2-PP2- and rA2-PP5-infected cells by 30 and 60%, respectively. Although the two recombinant viruses replicated well in Vero cells, rA2-PP2 and, to a greater extent, rA2-PP5, replicated poorly in HEp-2 cells. Virus budding from the infected HEp-2 cells was affected by dephosphorylation of P protein, because the majority of rA2-PP5 remained cell associated. In addition, rA2-PP5 was also more attenuated than rA2-PP2 in replication in the respiratory tracts of mice and cotton rats. Thus, our data suggest that although the major phosphorylation sites of RSV P protein are dispensable for virus replication in vitro, phosphorylation of P protein is required for efficient virus replication in vitro and in vivo.


Author(s):  
Antonella Di Sotto ◽  
Silvia Di Giacomo ◽  
Donatella Amatore ◽  
Marcello Locatelli ◽  
Annabella Vitalone ◽  
...  

DR2B and DR2C extracts, from peel of commercially and physiologically ripe eggplants, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions into the host cells. The antioxidative cytoprotective effects against tBOOH-induced damage was assessed in Caco2 cells, while the antiviral activity was studied in Vero cells; phenolic and anthocyanin fingerprint was characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. DR2C resulted able to partly counteract the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia. DR2B and DR2C reduced ROS production, possessed scavenging and chelating properties. Interestingly, DR2C increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent.


2021 ◽  
Vol 16 (2) ◽  
pp. 119-130
Author(s):  
Christopher Stathis ◽  
Nikolas Victoria ◽  
Kristin Loomis ◽  
Shaun A Nguyen ◽  
Maren Eggers ◽  
...  

A review of nasal sprays and gargles with antiviral properties suggests that a number of commonly used antiseptics including povidone-iodine, Listerine®, iota-carrageenan and chlorhexidine should be studied in clinical trials to mitigate both the progression and transmission of SARS-CoV-2. Several of these antiseptics have demonstrated the ability to cut the viral load of SARS-CoV-2 by 3–4 log10 in 15–30 s  in vitro. In addition, hypertonic saline targets viral replication by increasing hypochlorous acid inside the cell. A number of clinical trials are in process to study these interventions both for prevention of transmission, prophylaxis after exposure, and to diminish progression by reduction of viral load in the early stages of infection.


2013 ◽  
Vol 8 (3) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
David Silva-Mares ◽  
Ernesto Torres-López ◽  
Ana M Rivas-Estilla ◽  
Paula Cordero-Pérez ◽  
Noemí Waksman-Minsky ◽  
...  

Based on chemotaxonomic and ethno-pharmacological criteria, three Mexican plants ( Jatropha dioica, Salvia texana and S. ballotaeflora) were studied for in vitro activity against HSV-1 and HSV-2. Hydro-methanolic extracts were initially evaluated for their toxicity to Vero cells. Both Salvia species displayed cytotoxicity at the lowest dose (125 μg/mL). The J. dioica extract showed only negligible cytotoxicity (CC50 644 μg/mL). Its anti-HSV activity was evaluated using the plaque reduction assay with HSV-1 and HSV-2 (from clinical isolates) infected Vero cells. The hydro-methanolic extract of J. dioica showed IC50s of 280 and 370 μg/mL against HSV-1 and HSV-2, respectively. The n-hexane liquid-liquid partition of J. dioica extract contained the majority of the active principle(s) with IC50 values of 300 and 270 μg/mL for HSV-1 and HSV-2, respectively. Bioassay-guided isolation led to the known diterpene, riolozatrione.


Sign in / Sign up

Export Citation Format

Share Document