scholarly journals Efficient Facial Emotion Recognition Model using Deep Convolutional Neural Network and Modified Joint Trilateral Filter

Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.

2021 ◽  

Abstract The full text of this preprint has been withdrawn by the authors due to author disagreement with the posting of the preprint. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-5
Author(s):  
Steven Lawrence ◽  
Taif Anjum ◽  
Amir Shabani

Facial emotion recognition (FER) is a critical component for affective computing in social companion robotics. Current FER datasets are not sufficiently age-diversified as they are predominantly adults excluding seniors above fifty years of age which is the target group in long-term care facilities. Data collection from this age group is more challenging due to their privacy concerns and also restrictions under pandemic situations such as COVID-19. We address this issue by using age augmentation which could act as a regularizer and reduce the overfitting of the classifier as well. Our comprehensive experiments show that improving a typical Deep Convolutional Neural Network (CNN) architecture with facial age augmentation improves both the accuracy and standard deviation of the classifier when predicting emotions of diverse age groups including seniors. The proposed framework is a promising step towards improving a participant’s experience and interactions with social companion robots with affective computing.


Sign in / Sign up

Export Citation Format

Share Document